

Lightning

- Physical, recognizable
- Most often associated with surges
- Effects can be prominent and devastating
- Occurs much less frequently than switching surges

Lightning - Direct

- Most severe, high stress
- Immediately damaging to unprotected electronic components and electrical systems
- Mechanical failure
- Thermal overstress
- Permanent damage
- Intervention required (repairs)

- Involves near-by systems
- Multi-service interaction (communication systems, control circuits, etc.)

Atmospheric Charge Redistribution

- Not truly lightning
- No arc to ground (or vice-versa) or to another cloud
- Rapid movement of charge across a cloud
- Often occurs during or just after a lightning strike
- · Can occur without a lightning strike
- Electromagnetic field like a cloud-to-cloud strike

Atmospheric Charge Redistribution

- · Effects are similar to a far strike
- Induced voltages and currents on power, signal, communications and grounding conductors
- May be the cause of many failures that occur without the presence of a lightning event

Switching Surges

- Less notable (not visible)
- Not always immediately recognized as being damaging or disruptive
- Occur as part of everyday intended operations
- Occur as part of abnormal or unintentional operations or conditions

Switching Surges

- Sources from Normal or Intentional Operations
 - Contactors, relays or breakers
 - Switching of capacitor banks
 - Stored energy systems
 - Discharge of inductive devices
 - Starting and stopping of loads
 - Fault or arc initiation
 - Pulsed power loads

Switching Surges

- Sources from Abnormal or Unintentional Operations
 - Arcing faults or arcing ground faults
 - Fault clearing
 - Power system recovery
 - Loose connections
 - Lightning induced oscillatory surges

Switching Surges

- Frequency 350 Hz to 1000 kHz
- Often represented by 100 kHz
- Amplitudes typically range from a 2-3 times the operating voltage to 6,000 volts or higher
- Occur regularly and frequently in some cases multiple times per cycle

Coupling of Electrical Surges

- Occurs when energy from lightning or switching surges is transferred (coupled) to another system
- Impacts control, communication, data and other systems
- · Inductive and capacitive coupling

- Through multi-service/multi-port loads or even some SPDs
- Often damaging to cabling, connectors or interface of low voltage systems
- From power systems to low voltage systems
- · From low voltage systems to power systems

Coupling of Electrical Surges

- Due to coupling, failures of components because of surges can be misinterpreted
- A failed component on the communications side does not necessarily mean the surge originated from that point
- The failed component may have simply provided a low impedance path for the surge when coupled to that system

Surge Testing, Waveforms and Amplitudes

- IEEE Std C62.41.2[™]-2002
 - IEEE Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and less) AC Power Circuits

• IEEE Std C62.45[™]-2002

 IEEE Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits

• IEEE Std C62.62-2000

 IEEE Standard Test Specifications for Surge-Protective Devices for Low-Voltage AC Power Circuits

Amplitudes						
Category C Location						
Exposure Level	Waveform	Voltage	Current			
High	8/20 us Current	10 kV (minimum)	10 kA (driven through the SPD)			
Low	Combination Wave	6 kV (open circuit voltage)	3 kA (short circuit current)			
	Categor	y B Location				
High	Combination Wave	6 kV (open circuit voltage)	3 kA (short circuit current)			
Low	100 kHz Ring Wave	6 kV (open circuit voltage)	0.5 kA (short circuit current)			
	Categor	y A Location				
Low	Combination Wave	6 kV (open circuit voltage)	0.5 kA (short circuit current)			
Low	100 kHz Ring Wave	6 kV (open circuit voltage)	0.2 kA (short circuit current)			

SPD Application

- Location Categories (C, B, A)...
 - Category C
 - Outside and including the service entrance equipment.
 - Service drop from pole or transformer to a building.
 - Conductors between the utility's revenue meter and service entrance equipment.
 - Overhead line to detached buildings.
 - Underground line to a well pump or other outdoor electrical equipment.

Amplitudes					
Category C Location					
Exposure Level	Waveform	Voltage	Current		
High	8/20 us Current	10 kV (minimum)	10 kA (driven through the SPD)		
Low	Combination Wave	6 kV (open circuit voltage)	3 kA (short circuit current)		
	Categor	y B Location			
High	Combination Wave	6 kV (open circuit voltage)	3 kA (short circuit current)		
Low	100 kHz Ring Wave	6 kV (open circuit voltage)	0.5 kA (short circuit current)		
	Categor	y A Location			
Low	Combination Wave	6 kV (open circuit voltage)	0.5 kA (short circuit current)		
Low	100 kHz Ring Wave	6 kV (open circuit voltage)	0.2 kA (short circuit current)		

Available Short-Circuit Current and SPDs

- SPDs are tested to failure at various levels of available short-circuit current
- The highest current used is the SPD's short-circuit current rating (SCCR)
- SCCR's typically range from about 5,000 to 200,000 Amps – determined during the listing of the SPD
- The SCCR of an SPD must be higher than the available short-circuit current at the location of installation within the electrical system

Available Short-Circuit Current and SPDs

- If the available short-circuit current of the system at the point of installation is higher than the SCCR of the SPD, a different SPD must be selected or provisions made to limit the available short-circuit current at the point of application
- This is an NEC requirement

Coordination of an SPD with a Fuse or Breaker

- Many SPDs require an external fuse or breaker as part of their listing
- This requirement is required to appear on the SPD or in the installation instructions with the SPD
- Installation without the specified fuse or breaker violates the listing of the SPD

Coordination of an SPD with a Fuse or Breaker

- Installation of an SPD without the specified fuse or breaker could create a potentially hazardous situation
- The required fuse or breaker was utilized during the failure testing during the listing of the SPD
- Failure to use the specified fuse or breaker creates an NEC violation

Specifying SPDs

- IEEE C62.72[™]-2007
 - IEEE Guide for the Application of Surge-Protective Devices for Low-Voltage (1000 V or Less) AC Power Circuits
- Clause 9
 - Specification and Application questions

Surge Mitigation and SPDs

- Surge Protective Devices (SPDs)
 - For both power and low voltage systems (communication, data, control, transducers, coaxial connections, etc.)
 - Paramount to providing reliability and quality power
 - Decrease opportunity for systems failure due to surges

- Essential to promote survivability
- Reduce equipment loss, repairs, restarts and downtime
- · Aids in providing uninterrupted service

Summary

- SPDs help to mitigate the effects of surges
- SPDs promote:
 - Power quality
 - Uptime
 - System performance
 - Reliability

