

1: Number & Voltage of Transmission Lines

- ***** With higher voltage levels:
 - a) Fewer lines are needed to transmit power, making efficient use of ROW corridors
 - b) Line outage impact is significant
 - c) Technical difficulties
- ***** With lower voltage levels:
 - a) More lines are needed to transmit power
 - b) Line outage impact is insignificant
 - c) No technical difficulties

Page 3

2: Sub-Transmission Network

- ROW limitations, safety concerns & city regulations force the use of cables:
 - a) Higher fault currents due to low impedance of cables
 - b) Prolonged outages due to difficulty in fault detection & repair
 - c) Difficulty in voltage control due to high capacitance of cables
 - d) Installation in city streets, tunnels & canals

3-1: High Fault Currents

- ***** Causes:
 - a) Multiple lines to transmit large quantities of power to high density city load
 - **b)** Generation in the city
 - c) Use of low impedance cable circuits
- ***** Possible Solutions:
 - Split network design
 - Radial network design
 - > Series inductors in cable circuits

Page 5

3-2: High Fault Currents

- Split network design:
 - a) Power system is split into two large independent networks laid side by side
 - b) Have separate busses at substations
 - c) Carry equal magnitude of load
 - d) Designed to switch loads

4-1: Disparity in System Strength

A big city tends to import power from all directions. It is problematic if one side is not strong enough to support city load

- ***** Possible solutions:
- a) Phase shifting transformers
- b) Generation on weak system side
- c) Transmission substation on weak system side
- d) Transmission ring around a big city

Page 11

4-2: Disparity in System Strength

- Phase shifting transformers:
 - a) Regulate flow of power from weak system to city network
 - b) Does not resolve capacity deficiency issue
 - c) Possible connectivity issue on distribution feeders originating from across the phase shifting transformer

4-3: Disparity in System Strength

- ***** Generation on weak system side:
 - a) Resolves capacity deficiency issue
 - b) High cost of land & fuel transportation discourage new generation in big cities
 - c) Clean air legislation may impact economic viability of generation

4-4: Disparity in System Strength

- Transmission substation on weak system side:
 - a) This substation is connected to strong sources using cable circuits in city streets
 - b) Resolves capacity deficiency issue

5-2: Management of Reactive Power

- Dynamic reactive devices (fast responding):
 - a) Expensive but critical for voltage stability
 - b) Generator, synchronous condenser, or any thyristor switched & controlled inductor/capacitor (SVC, STATCOM)
- **Static reactive devices (slow responding):**
 - a) Provide voltage support
 - b) Switched capacitors and inductors

Page 19

6: Substations in the City

- a) Scarcity of land, safety concerns & city regulations force the use of indoor substations that are costlier
- b) Substations in high-rise buildings
- c) Underground substations in gardens, churches & public parking

7-1: Power Quality

Expanded use of power electronics have made city residents increasingly sensitive to power quality issues

- ***** Generally power quality is defined as:
 - a) Continuity of power supply
 - b) Distortion-free wave shape without harmonics, transients & voltage sag

Page 21

7-2: Power Quality

- ***** Electric utilities should ensure that:
 - a) Power Plants generate power that is free from wave-shape distortion
 - b) Power delivery system meets power quality standards
 - c) Industrial customers minimize and address power quality issues
 - d) Encourage vendors to improve equipment design to ride through power quality issues

8-1: Switchgear Arrangement

A substation is like a door to pass electric power from one network to the other

- ***** The right switchgear arrangement could:
 - a) Mitigate impact of system outages
 - b) Contain cascading outages
 - c) Help islanding during system collapse
 - d) Better manage market flows
 - e) Maintain system reliability

Page 23

8-2: Switchgear Arrangement

- ***** Considerations to select:
 - a) Reliability level versus cost
 - **b)** Ease in maintenance
 - c) Ability to regulate market flows
 - d) Environmental concerns
 - e) Flexibility of expansion
 - f) Operating flexibility

