

	Today's Power Delivery System		Future Power Delivery System
•	Homogeneous service offering	1	Customized service offerings tailored to different customer segments
•	Customers uninformed participants in the energy supply chain	1	Customers become active participants in the energy supply chain
•	Energy supply from central generation, primarily fossil, nuclear, natural gas, and hydro	ľ	Energy supply from central and distributed generation sources, significant increase in capacity from renewables
•	Predictive-based asset replacement		Condition-based asset replacement
•	Grid communications primarily one-way, SCADA based		Two-way, "real-time" communications throughout the grid
•	Limited ability for grid to diagnose and respond to grid contingencies, operator intervention required	•	"Real-time" monitoring, diagnostic, reconfiguration capabilities enable the grid to respond to grid contingencies automatically

			on - Load Managem		
Solutions	A/C Cycling	Comprehensive End-Use Device Control	Economic Dispatch Based Load Control (Demand-Side	Customer DER Dispatch	Real-time grid configuration and VAR support
Description	compressor switches can be activated by the utility to reduce load during	• End use devices can be customer programmed or controlled by utilities to respond to price-based signals based on customer defined preferences (e.g. Shut off specific end use devices)	customers on "circuits under stress" Real-time assessment of dispatchable DR on a locational- marginal pricing node basis	activates customer-sited DER as a "dispatchable resource" in addition to load curtailment • Dispatch based	 Automatically dispatch DER to provide VAI support Enable real- time reconfiguratio (e.g. self- islanding microgrids) to based on system contingencies

	R should be factored into system planning processes as an option to defer capital ojects and improve capital efficiency
•	 DER is a viable option for grid support to improve reliability, power quality, and defer capacity upgrades May be applicable as a peak shaving option on specific circuits approaching capacity thresholds Can be used to address localized power quality issues Provide temporary power during maintenance and repair events
•	 DER assets are integrated into the grid in one of three modes: Directly (internally) to a specific circuit At the substation In an "island" mode to perform maintenance
1	Some utilities such as DTE have formally incorporated DER assessment into their system planning processes to evaluate "what if" scenarios involving DER versus traditional T&D capacity upgrades (e.g. new substation, transformer replacement, etc.)
	Page 11 Bridge Strategy Group LLC ©2006

