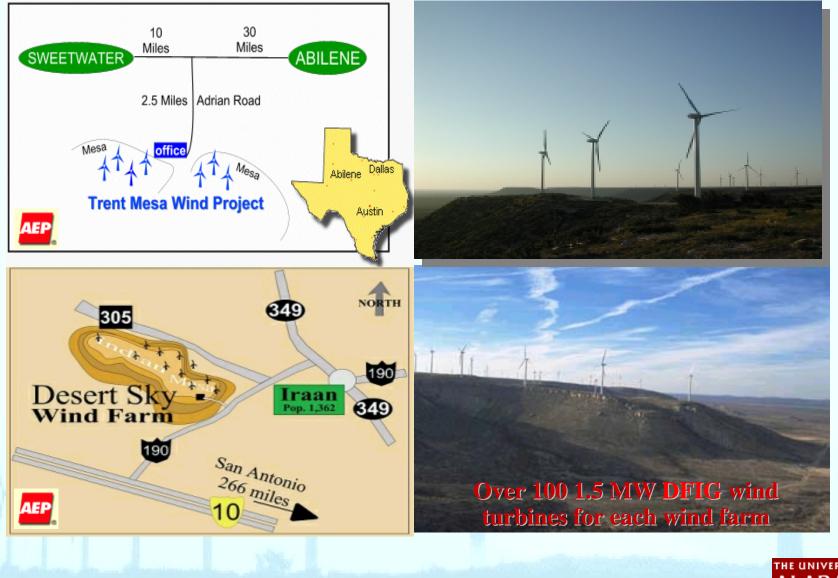
Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into **Transmission Grid**

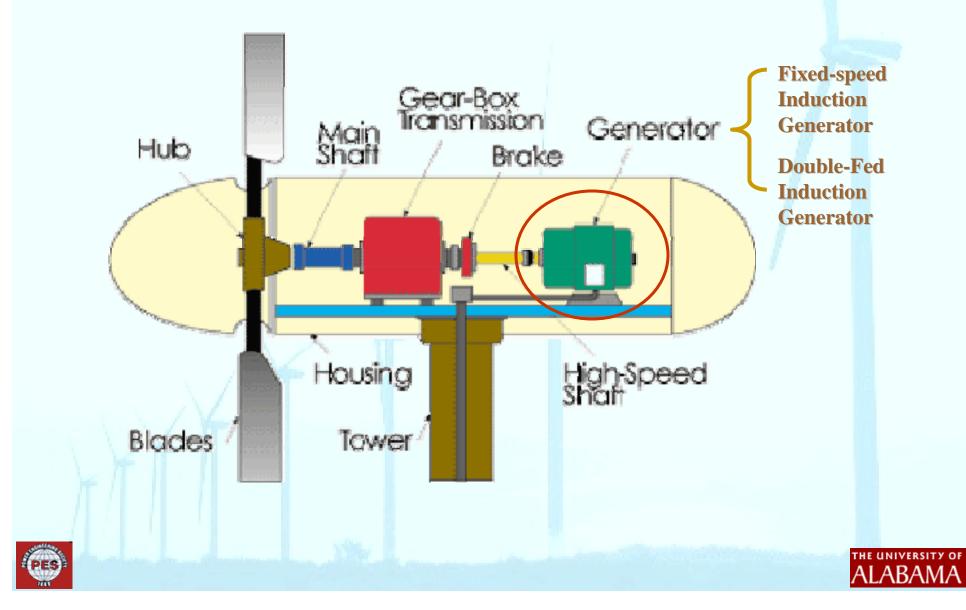
Shuhui Li¹, Tim Haskew¹, R. Challoo

¹Department of Electrical and Computer Engineering The University of Alabama Tuscaloosa, AL 35487

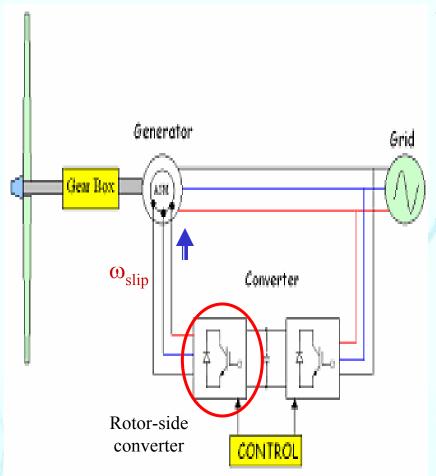
Presented at



Wind Energy – A Fast Growing Energy Source in Texas



PES

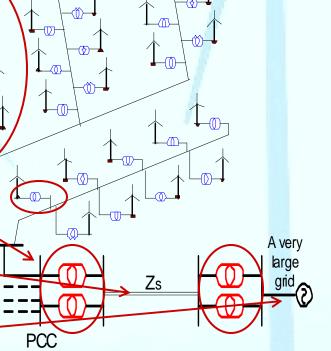

The Wind Turbine

Inside the Wind Turbine

Fixed and Variable Speed Induction Generator Wind Turbines

- Fixed-speed IG wind turbines
 - Relatively simple and robust
 - Low energy yield
 - Large mechanical loads
 - Lack of control possibilities of both active and reactive power.
 - Large fluctuations in output power

Variable-speed DFIG wind turbines


- A higher energy yield.
- Reduction of mechanical loads.
- Extensive controllability of both active and reactive power.
- Easier comply with the requirements of grid companies.
- Less fluctuations in output power.

THE UNIVERSITY OF

Integration of Wind Turbines into Transmission Grid

- A cluster of wind turbines
- Turbine distribution transformer
- The point of common coupling (PCC).
- PCC transmission transformer
- Transmission line –
- Grid transformer
- The grid

Issues for Grid Integration of DFIG Wind Turbines

- What are the DFIG characteristics compared to those of fixed-speed IGs?
- How DFIG characteristics and controls are affected as more turbines are added online?
- Will a parallel compensation improve DFIG controls and characteristics?
- How about a series compensation?
- What are the differences between a wind farm using variable-speed DFIGs and fixed-speed IGs?
- What are the integrative characteristics for both situations?

Contents

- 1. Steady-state model in d-q frame
- 2. Characteristics of a single wind turbine
- 3. WECS characteristics as multiple turbines are connected online
- 4. WECS characteristics under parallel compensation
- 5. WECS characteristics under series compensation
- 6. Integrated steady-state and transient studies
- 7. Conclusions

Contents

1. Steady-state model in d-q frame

- 2. Characteristics of a single wind turbine
- 3. WECS characteristics as multiple turbines are connected online
- 4. WECS characteristics under parallel compensation
- 5. WECS characteristics under series compensation
- 6. Integrated steady-state and transient studies
- 7. Conclusions

Induction Machine Transient Model in d-q Frame

• d-q representation (three equations):

Stator voltage equation: $\begin{pmatrix} v_{sd} \\ v_{sq} \end{pmatrix} = R_s \begin{pmatrix} i_{sd} \\ i_{sq} \end{pmatrix} + \frac{d}{dt} \begin{pmatrix} \lambda_{sd} \\ \lambda_{sq} \end{pmatrix} + \omega_{syn} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \lambda_{sq} \\ \lambda_{sd} \end{pmatrix}$ Rotor voltage equation: $\begin{pmatrix} v_{rd} \\ v_{rq} \end{pmatrix} = R_r \begin{pmatrix} i_{rd} \\ i_{rq} \end{pmatrix} + \frac{d}{dt} \begin{pmatrix} \lambda_{sd} \\ \lambda_{sq} \end{pmatrix} + \omega_r \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \lambda_{sd} \\ \lambda_{sq} \end{pmatrix}$ Flux linkage equation: $\begin{pmatrix} \lambda_{sd} \\ \lambda_{rq} \\ \lambda_{sd} \\ \lambda_{rq} \end{pmatrix} = \begin{pmatrix} L_s & 0 & L_m & 0 \\ 0 & L_s & 0 & L_m \\ L_m & 0 & L_r & 0 \\ 0 & L_m & 0 & L_r \end{pmatrix} \begin{pmatrix} i_{sd} \\ i_{rq} \\ i_{rd} \\ i_{rq} \end{pmatrix}$

- Space vector representation: $(\vec{v}_{r_d} = v_{rd} + jv_{rq} \rightarrow \text{injected rotor (control) voltage})$
 - Stator voltage equation: $\vec{v}_{s_dq} = R_s \vec{i}_{s_dq} + \frac{d}{dt} \vec{\lambda}_{s_dq} + j\omega_{syn} \vec{\lambda}_{s_dq}$ Rotor voltage equation: $\vec{v}_{r_dq} = R_r \vec{i}_{r_dq} + \frac{d}{dt} \vec{\lambda}_{r_dq} + j\omega_{slip} \vec{\lambda}_{r_dq}$



From Transient to Steady-State Model

• <u>Steady-state</u> space vector voltage equations:

Stator voltage equation: $\vec{v}_{s_dq} = R_s \vec{i}_{s_dq} + \frac{d}{dt} \vec{\lambda}_{s_dq} + j\omega_{syn} \vec{\lambda}_{s_dq}$ Rotor voltage equation: $\vec{v}_{r_dq} = R_r \vec{i}_{r_dq} + \frac{d}{dt} \vec{\lambda}_{r_dq} + j\omega_{slip} \vec{\lambda}_{r_dq}$

- Replace flux linkage using stator/rotor currents: Stator steady-state voltage equation: $\vec{V}_{s_dq} = R_s \vec{I}_{s_dq} + j\omega_s L_{ls} \vec{I}_{s_dq} + j\omega_s L_m (\vec{I}_{s_dq} + \vec{I}_{r_dq})$ Rotor steady-state voltage equation: $\frac{\vec{V}_{r_dq}}{s} = \frac{R_r}{s} \vec{I}_{r_dq} + j\omega_s L_{lr} \vec{I}_{r_dq} + j\omega_s L_m (\vec{I}_{s_dq} + \vec{I}_{r_dq})$
- Steady-state d-q equivalent circuit:

Transmission System Models in d-q Frame

• Three-phase voltage balance equation:

$$\begin{bmatrix} \mathbf{v}_{ag} \\ \mathbf{v}_{bg} \\ \mathbf{v}_{cg} \end{bmatrix} = R \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + L \frac{d}{dt} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \begin{bmatrix} \mathbf{v}_{af} \\ \mathbf{v}_{bf} \\ \mathbf{v}_{cf} \end{bmatrix}$$

Grid voltage

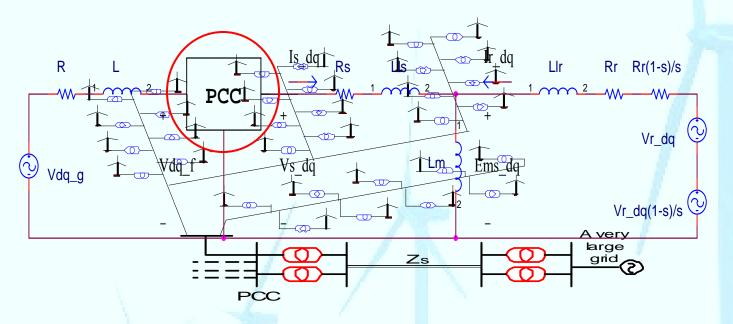
• d-q voltage balance equation:

$$\begin{bmatrix} v_{dg} \\ v_{qg} \end{bmatrix} = R \begin{bmatrix} i_d \\ i_q \end{bmatrix} + L \frac{d}{dt} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \omega_s L \begin{bmatrix} -i_q \\ i_d \end{bmatrix} + \begin{bmatrix} v_{df} \\ v_{qf} \end{bmatrix}$$
Grid dq voltage

• Space vector equation:

$$\vec{v}_{dq_g} = R \cdot \vec{i}_{dq} + L \frac{d}{dt} \vec{i}_{dq} + j\omega_s L \cdot \vec{i}_{dq} + \vec{v}_{dq_f}$$

• Steady-state d-q equation:


$$\vec{V}_{dq_g} = R \cdot \vec{I}_{dq} + j\omega_s L \cdot \vec{I}_{dq} + \vec{V}_{dq_f} = \underbrace{\left(R + j\omega_s L\right)}_{Z_s} \cdot \sum_{i=1}^n \underbrace{\vec{I}_{dq_i}}_{turbine\ current} + \vec{V}_{dq_f}$$

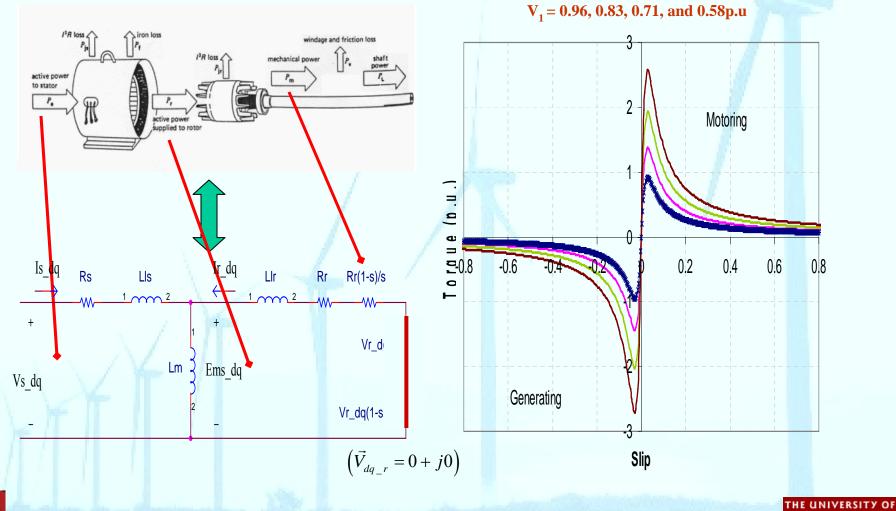
Integrated Wind Farm and Grid Steady-State Equivalent Circuit in d-q Frame

- Voltage turbines are identical and use fixed speed induction machines.
- Current transformation from generator terminal to the hine, turbines have the same operating condition.
- Sum of generator current representing the total current for all the wind
 - The line impedance between each turbine and the PCC is neglected.

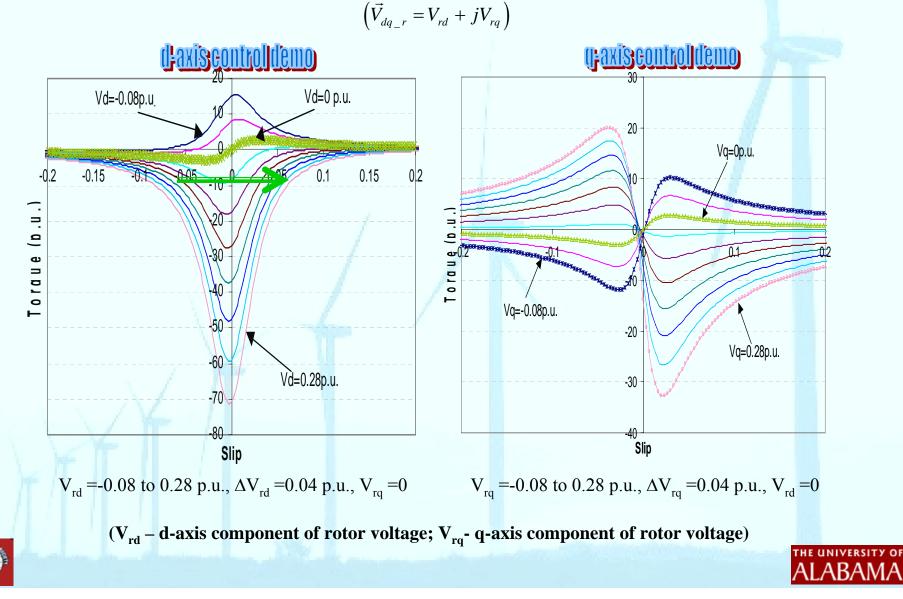
Contents

- 1. Steady-state model in d-q frame
- 2. Characteristics of a single wind turbine
- 3. WECS characteristics as multiple turbines are connected online
- 4. WECS characteristics under parallel compensation
- 5. WECS characteristics under series compensation
- 6. Integrated steady-state and transient studies
- 7. Conclusions

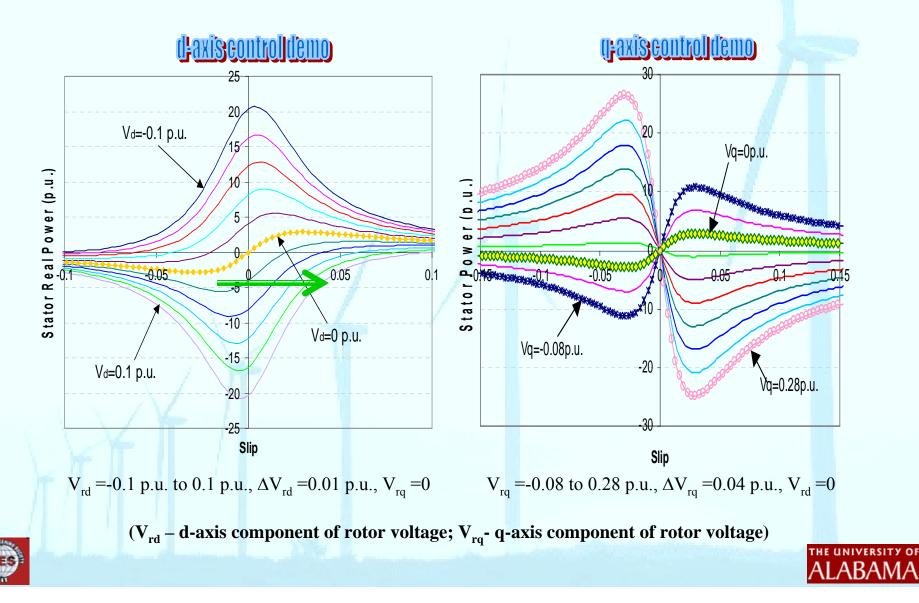
- Based upon the DFIG steady-state model and equivalent circuit
- Grid voltage: constant voltage at 1p.u. for all simulation case $(\vec{V}_{dq_{-}g} = 1 + j0)$
- Rotor injected voltage: control voltage from rotor-side converter variable for each simulation case study

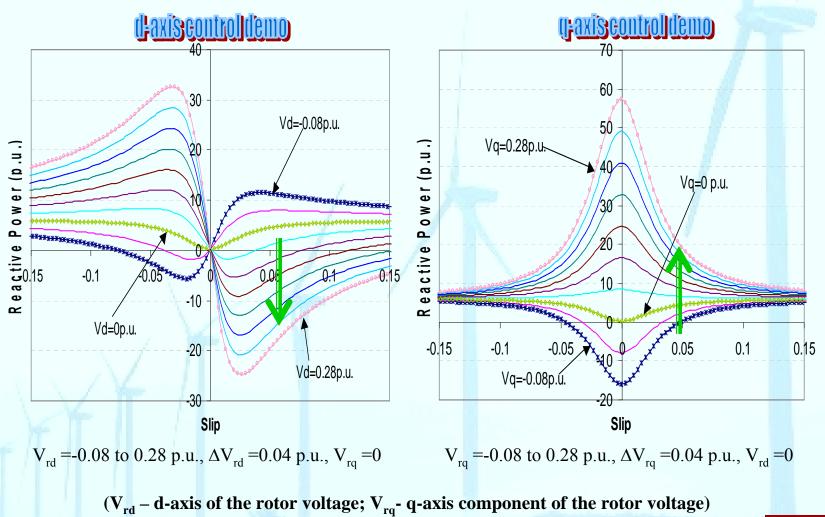

$$\left(\vec{V}_{dq_r} = V_{rd} + jV_{rq}\right)$$

• Characteristics: versus slip obtained for each rotor voltage control condition


Typical Characteristics of Fixed-Speed IG

ALABAMA


DFIG <u>Torque</u> Characteristics under d-q Control $(\vec{v} - v + iv)$



DFIG Stator <u>Real Power</u> Characteristics

 \triangleleft

DFIG Stator <u>Reactive Power</u> Characteristics

 \triangleleft

General Properties of DFIG Wind Turbine

Torque characteristics:

- generating mode: from over-synchronous to sub-synchronous speed region
- pushover torque increases; improve DFIG stability.

Stator real power characteristics:

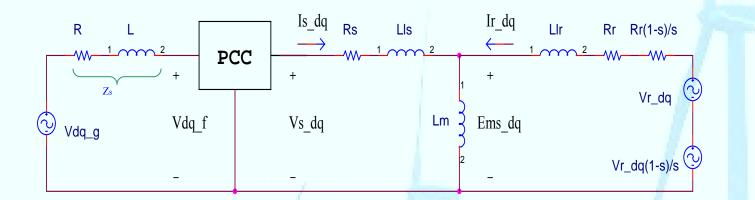
- similar to the torque characteristics.
- d-axis voltage is more stable for torque and real power control;

Reactive power:

- d or q control alone result in excessive reactive power, requiring q or d control to compensate the reactive power.
- q-axis voltage is more stable for reactive power control.

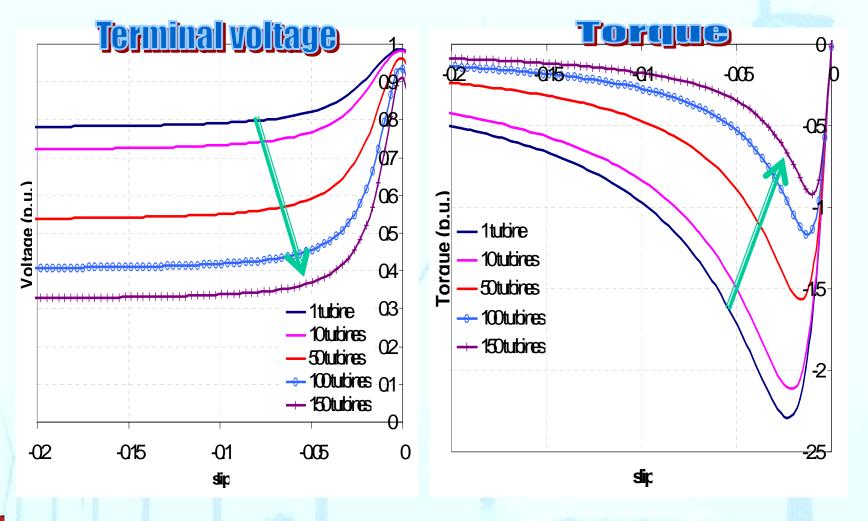
Control coordination between d and q is important:

- keep the pushover torque smaller than the generator driving torque
- maintain stator and rotor power within the rated power limitations.


Contents

- 1. Steady-state model in d-q frame
- 2. Characteristics of a single wind turbine
- **3. WECS characteristics as multiple turbines are connected online**
- 4. WECS characteristics under parallel compensation
- 5. WECS characteristics under series compensation
- 6. Integrated steady-state and transient studies
- 7. Conclusions

Wind farm Model with Multiple Wind Turbines (uncompensated)

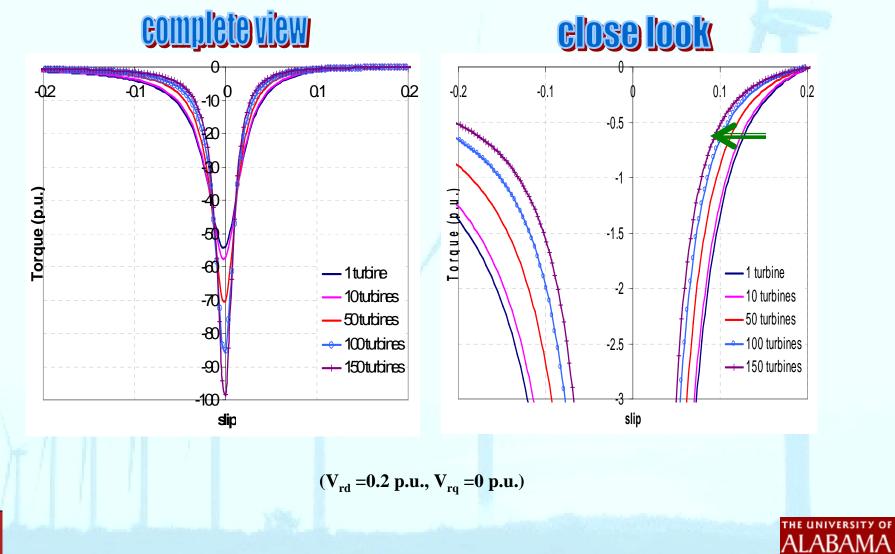

Voltage balance equation:

One turbine only: $\vec{V}_{dq_f} = \vec{V}_{dq_g} - \vec{I}_{dq_1} \cdot Z_s$ n turbines: $\vec{V}_{dq_f} = \vec{V}_{dq_g} - (\vec{I}_{dq_1} + \dots + \vec{I}_{dq_n}) \cdot Z_s$ $= \vec{V}_{dq_g} - n\vec{I}_{dq_1} \cdot Z_s = \vec{V}_{dq_g} - \vec{I}_{dq_1} (n \cdot Z_s)$

Wind Farm using Fixed-Speed IGs

 \triangleleft

Properties of Fixed-Speed IG Wind Farm


(as number of turbines added to the wind farm increases)

- Generator terminal voltage drops.
- Torque characteristics of a wind turbine shrink (also true for output power-speed characteristics).
- Both terminal voltage drop and equivalent line impedance changes cause the torque characteristics to shrink.
- Stability of a fixed-speed wind turbine is reduced.

Wind Farm using variable-Speed DFIGs

Properties of Variable-Speed DFIG Wind Farm

(as number of turbines added to the wind farm increases)

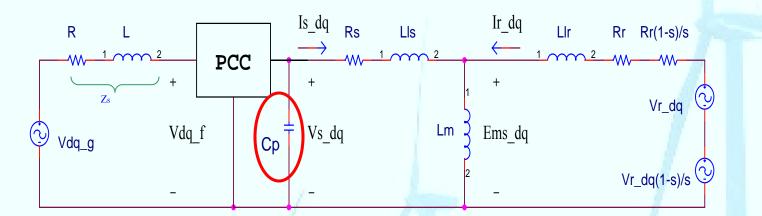
• Around the synchronous slip:

- more reactive power generation
- higher generator terminal voltage
- pushover torque increases rather than decreases (also true for stator real power characteristics)
- DFIG becomes more stable.

<u>Away from the synchronous speed:</u>

- voltage boost effect drops quickly.
- the effectiveness of the speed control is reduced.
- a larger voltage control signal is needed for the same speed control effect
- the rotor-side converter is more fragile to get into the converter nonlinear modulation mode.

Contents

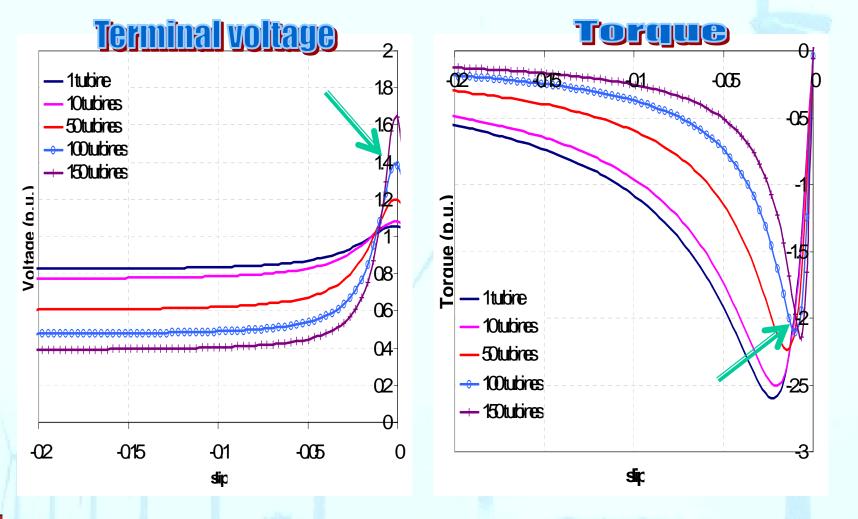

- 1. Steady-state model in d-q frame
- 2. Characteristics of a single wind turbine
- 3. WECS characteristics as multiple turbines are connected online /
- 4. WECS characteristics under parallel compensation
- 5. WECS characteristics under series compensation
- 6. Integrated steady-state and transient studies
- 7. Conclusions

Wind farm Model with Multiple Wind Turbines (parallel compensated)

• Voltage balance equation:

One turbine only:

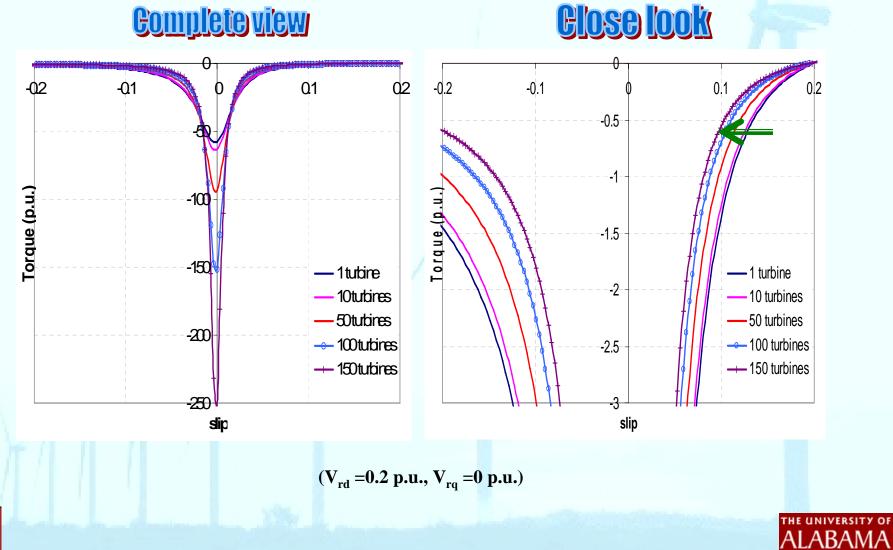
$$\vec{V}_{dq_f} = \vec{V}_{dq_g} - \left(\vec{I}_{dq_1} + \vec{I}_{dq_cp_1}\right) \cdot Z_s; \quad \vec{I}_{dq_cp_1} = jX_{cp} \cdot \vec{V}_{dq_f}$$


n turbines:

$$\vec{V}_{dq_f} = \vec{V}_{dq_g} - \left(\vec{I}_{dq_1} + \vec{I}_{dq_cp_1}\right) \cdot \left(nZ_s\right); \quad \vec{I}_{dq_cp_1} = jX_{cp} \cdot \vec{V}_{dq_c}$$

Wind Farm using Fixed-Speed IGs

Properties of Parallel Compensated Fixed-Speed IG Wind Farm


(as number of turbines added to the wind farm increases)

- A properly selected parallel capacitor:
 - generator terminal voltage is boosted
 - pushover torque is improved
 - at the price of a high over-voltage
- <u>To avoid a high over-voltage:</u>
 - Either a thyristor controlled parallel compensation or a smaller parallel capacitor
 - A smaller parallel capacitor → torque characteristics of a fixed-speed IG still shrink considerably

Wind Farm using variable-Speed DFIGs

Properties of Parallel Compensated Variable-Speed DFIG Wind Farm

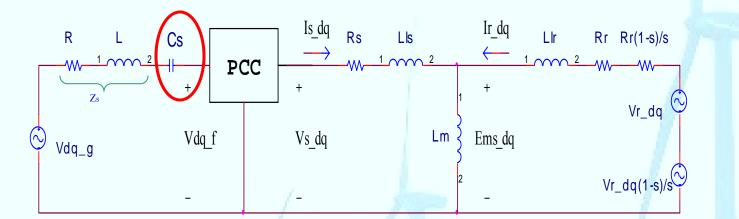
(as number of turbines added to the wind farm increases)

• Around the synchronous slip:

- more reactive power generation
- higher generator terminal voltage
- pushover torque increases rather than decreases (also true for stator real power characteristics)
- DFIG becomes more stable.

<u>Away from the synchronous speed:</u>

- voltage boost effect drops quickly.
- the effectiveness of the speed control is reduced.
- a larger voltage control signal is needed for the same speed control effect
- the rotor-side converter is more fragile to get into the converter nonlinear modulation mode.


Contents

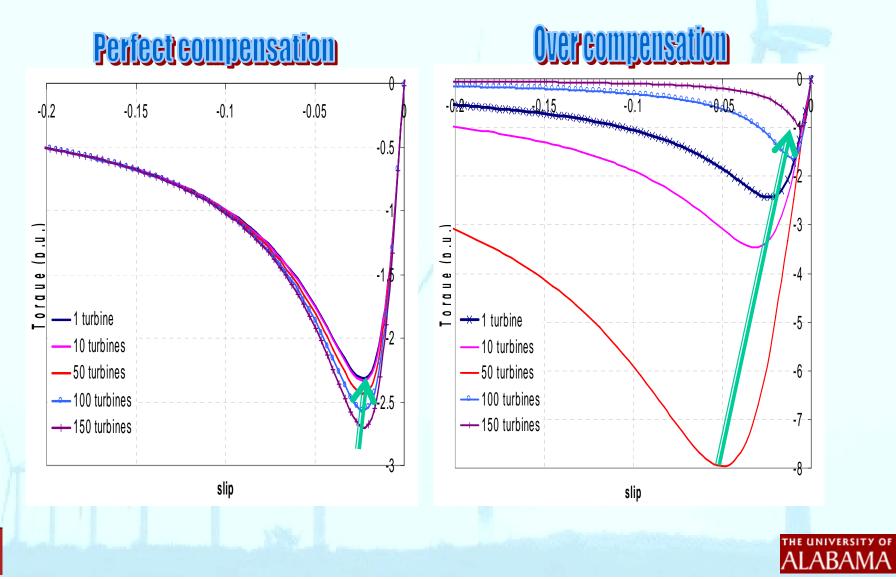
- 1. Steady-state model in d-q frame
- 2. Characteristics of a single wind turbine
- 3. WECS characteristics as multiple turbines are connected online /
- 4. WECS characteristics under parallel compensation
- 5. WECS characteristics under series compensation
- 6. Integrated steady-state and transient studies
- 7. Conclusions

Wind farm Model with Multiple Wind Turbines (series compensated)

Voltage balance equation:

One turbine only:

$$\vec{V}_{dq_f} = \vec{V}_{dq_g} - \vec{I}_{dq_1} \cdot \left(Z_s - X_{Cs} \right)$$

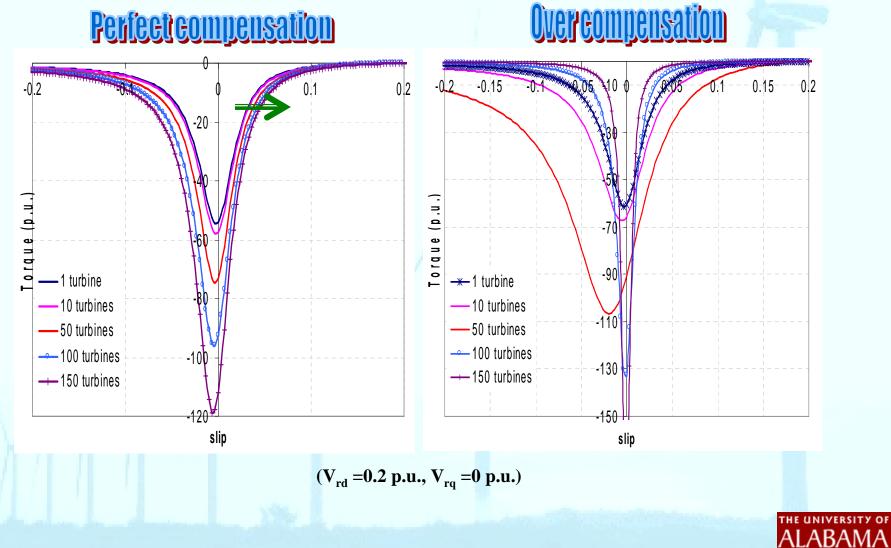

n turbines:

$$\vec{V}_{dq_f} = \vec{V}_{dq_g} - \vec{I}_{dq_1} \cdot n\left(Z_s - X_{cs}\right)$$

Wind Farm using Fixed-Speed IGs

Properties of Series Compensated Fixed-Speed IG Wind Farm

(as number of turbines added to the wind farm increases)


- A properly selected series capacitor:
 - voltage regulation is greatly reduced
 - generator torque characteristics and stability are improved
 - usually requires a large capacitor
- Over compensation:
 - A low series capacitance
 - a high generator terminal voltage
 - significant drop of generator torque characteristics
 - affect proper and/or stable operation of fixed-speed wind turbines.

Wind Farm using variable-Speed DFIGs

 \triangleleft

Properties of Series Compensated Variable-Speed DFIG Wind Farm

(as number of turbines added to the wind farm increases)

- <u>A properly selected series capacitor:</u>
 - Equivalent line impendence is much smaller.
 - Total reactive power generation increases at low speed.
 - Torque characteristics expand
 - Voltage control signal is smaller than that without a series compensation for the same speed control effect
 - Converter has larger margin toward its nonlinear modulation mode.
- Over compensation:
 - high generator terminal voltage
 - considerable distortion of DFIG characteristics
 - affect operation, efficiency and effective control of DFIG wind turbines on the wind farm.

Contents

- 1. Steady-state model in d-q frame
- 2. Characteristics of a single wind turbine
- 3. WECS characteristics as multiple turbines are connected online /
- 4. WECS characteristics under parallel compensation
- 5. WECS characteristics under series compensation
- 6. Integrated steady-state and transient studies
- 7. Conclusions

Integrated Simulation Environment

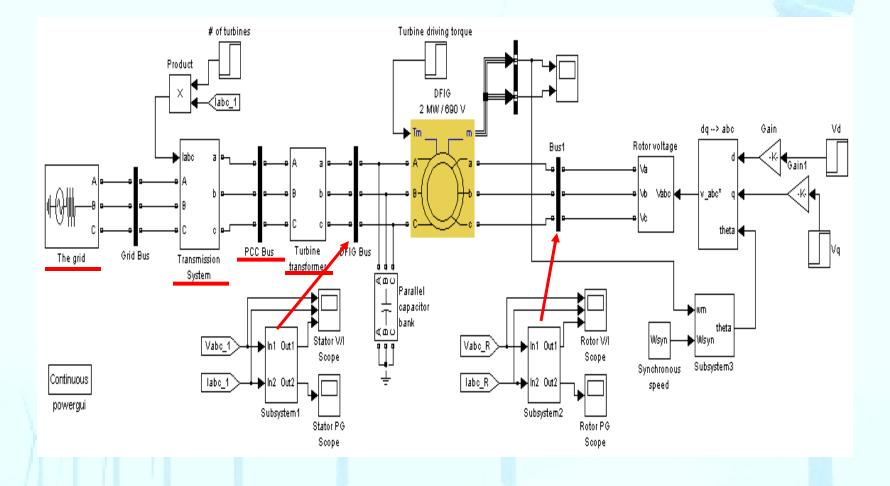
- d-q control of the rotor-side controller affect machine operating data simultaneously:
 - Torque & speed
 - Stator real and reactive power
 - Rotor real and reactive power
 - Stator/rotor d and q currents.
- Integrative study:
 - examine input/output power, torque, and other parametric data concurrently
 - evaluate various practical constraints
 - rated power of the stator and rotor windings
 - acceptable slip
 - converter linear modulation requirement.

Integrated Steady-State Study Using MathCAD

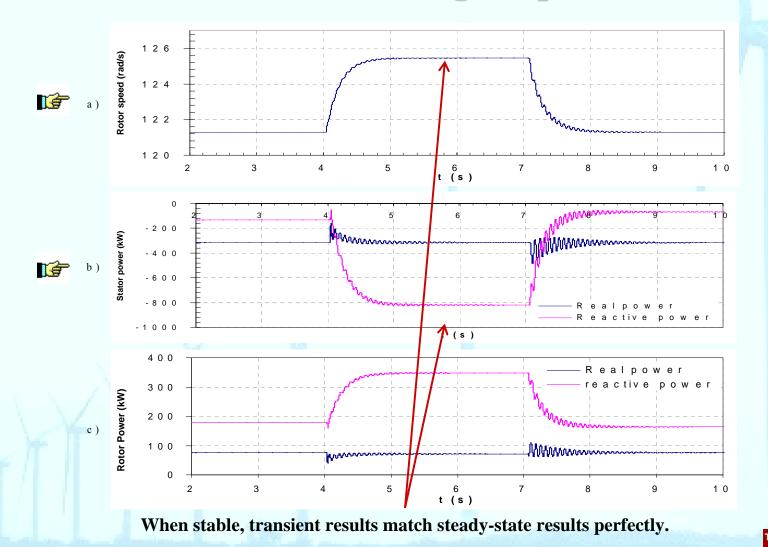
$$\begin{split} \mathbf{n} &= \mathbf{I} \qquad \mathbf{z}_{n} := \mathbf{z}_{n} + \mathbf{z}_{n} + \mathbf{n} \cdot \mathbf{z}_{1} \qquad \mathbf{z}_{1n} := \frac{\mathbf{z}_{m} \mathbf{z}_{n}}{\mathbf{z}_{m} + \mathbf{z}_{n}} \qquad \mathbf{V}_{n} \cdot \mathbf{d}_{1} := \mathbf{V}_{n} \cdot \mathbf{d}_{n} := \mathbf{d}$$

Integrative power generation and control study

(Turbine drive power: 600kW; Turbine rotational speed: 120rad/s)


No. of wind turbines	Uncompensated		Parallel		Series	
	1	150	1	150	1	150
Stator line voltage (V)	694.7	707.5	732.7	715.8	692.9	700
Stator real power (kW)	-777.1	-777.5	-777	-761	-777.4	-7 77.3
Resultant reactive power (kVar)	-162.5	-101.7	-2650.9	-174.3	-54.6	64.2
Rotor real power (kW)	186.3	186.4	185.1	197.2	186.2	185.7
Rotor reactive power (kVar)	196.9	185.9	31.3	-426.7	168	139.9
V _{rd} control (V)	171.5	171.5	171.5	133.4	169.7	169.7
V _{rq} control (V)	12.4	31.4	11.38	31.35	12.6	13.3
Generator Efficiency (%)	98.8	98.9	99	95.5	98.9	98.9

Integrated Transient Study Using SimPowerSystems



T&D 2008

DFIG transient simulation under constant turbine driving torque

Conclusions

As the number of turbines online increases

• Uncompensated wind park:

- Fixed-speed WECS: torque characteristics shrinks obviously.
- Variable-speed DFIG WECS:
 - DFIG stability increases as more turbines are connected online
 - A higher voltage control signal may be needed to get the same speed control effect

• Parallel compensated wind park:

- Fixed-speed WECS:
 - Enhances the generator torque characteristics
 - Over-voltage may become a critical problem.
- Variable-speed DFIG WECS:
 - DFIG stability is reinforced
 - A higher voltage control signal may still be needed to achieve the same speed control effect.

Series compensated wind park:

- Properly designed series compensation improves the generator profiles for both fixed and variable speed induction generators.
- A high overcompensation may derogate fixed-speed wind turbine characteristics and distort the DFIG characteristics significantly.

