LONG TERM ANALYSIS OF LINE ARRESTER APPLICATION FIELD STUDY

Wayne N. Zessin Senior Engineer Reliability Programs

An Exelon Company

John McDaniel Senior Engineer Dist. Reliability

national**grid**

Lightning Caused Interruptions

- 10% of system SAIFI in 2007 (IEEE Def)
- 480,000 Customer Interruptions
- Historically a significant contributor to sustained outages

ComEd Summer Lightning Activity

2004

Key Points

•Intensity varies by year and by region •Over time, greater in Southern regions

1992 Study

- Software could model various parameters
- Output was predicted flashover rate

1992 Study

- Software could model various parameters
- Output was predicted flashover rate
- Assess current standard for lightning arrester application

1992 Study

- Software could model various parameters
- Output was predicted flashover rate
- Assess current standard for lightning arrester application
- Recommend changes for improved performance

1992 Study

- Results
 - Predicted 70% reduction in flashover rate by reducing arrester spacing to 180 m (600 ft)

1992 Study

• Results

- Predicted 70% reduction in flashover rate by reducing arrester spacing to 180 m (600 ft)
- Recommendations (New Standard)
 - New construction
 - Arresters every 180 m (600ft)
 - Existing circuits
 - Follow new standard as needed
 - Bring grounds up to spec

1995 Field Trial

- Objective
 - Verify predicted performance improvement

1995 Field Trial

• Objective

- Verify predicted performance improvement

- Methodology
 - Select 2 groups of circuits
 - Upgrade 1 group to new standard
 - 1 group left as a control
 - Compare performance after some time period

- 60 circuits selected
 - Based on 5 year outage data
 - 30 control, 30 experimental

1995 Field Trial

 After 3 "lightning seasons" compare performance

1995 Field Trial

- After 3 "lightning seasons" compare performance
- ComEd database of outages coded as lightning
 - IEEE outages (> 5 minutes)

1995 Field Trial

- After 3 "lightning seasons" compare performance
- ComEd database of outages coded as lightning
 - IEEE outages (> 5 minutes)
- Lightning data obtained using FALLS™ software from Vaisala, Inc
 - 1 kM buffer

1995 Field Trial							
	<u># INTER</u>	<u>LENGTH</u>	<u>GSD</u>	INT/100KM/GSD			
CONTROL AVG	14.43	150.7	21.27	0.457			
EXPER	11.93	183	21.88	0.305			

- Validate results of earlier study
- 9 Years: 1998 through 2006
- Same methodology

- Question: Are the 60 circuits still valid?
 - Mostly rural
 - Less change over time

- Question: Are the 60 circuits still valid?
 Mostly rural
 - Less change over time
- Initial assumption was: Yes

- Question: Are the 60 circuits still valid?
 - Mostly rural
 - Less change over time
- Initial assumption was: Yes
- Study update was performed

Detailed circuit by circuit comparison
 2006 vs. 1997 configuration

- Detailed circuit by circuit comparison
 2006 vs. 1997 configuration
- Control circuits
 21 of 30 unchanged

- Detailed circuit by circuit comparison – 2006 vs. 1997 configuration
- Control circuits
 21 of 30 unchanged
- Experimental circuits - 20 of 30 unchanged

- Conclusion
 - Assumption was reasonable but
 - Rerun study using the 41 circuits

2007 Study Update – 41 Circuits

	<u># INTER</u>	<u>LENGTH</u>	<u>GSD</u>	INT/100KM/GSD
CONTROL AVG	60.8	148.6	104.8	0.390
EXPER AVG	56.2	185.7	105.5	0.291

• Statistical analysis: 16% improvement, 95% confidence

2007 Study Update – 41 Circuits

- Results not as great as prediction (70%)
 - Calculation actually *Flashover* rate, not *Outage* rate
 - Reclosers Not all flashovers are outages

2007 Study Update – 41 Circuits

- Results not as great as prediction (70%)
 - Calculation actually *Flashover* rate, not *Outage* rate
 - Reclosers Not all flashovers are outages
 - Model vs. Field Conditions
 - Arrester spacing in control group
 - Pole height
 - BIL

LONG TERM ANALYSIS OF LINE ARRESTER APPLICATION FIELD STUDY

QUESTIONS???

Wayne N. Zessin Senior Engineer Reliability Programs

An Exelon Company

John McDaniel Senior Engineer Dist. Reliability

national**grid**