Mitigating Lightning Outages **On 138 kV Transmission Lines**

By Steve Lodwig

Mitigating Lightning Outages

- Improve the electrical supply to industrial customers with processes susceptible to lightning momentary outages
- How to pick a method to mitigate momentary outages?
 - Weigh the level of improvement <u>needed</u> and cost of the modification
- This paper
 - Compares means of mitigating the outage
 - Details the effectiveness of a low cost improvement in lightning outages

IEEE Lightning Design Improvements

- IEEE 1243 <u>Guide for Improving the Lightning</u> <u>Performance of Transmission Lines</u> mentions the following means of improvement:
 - Reduce Ground Resistance & Add Counterpoise
 - Increase Insulation length
 - Add Shield Wires
 - Add Guy Wire to Steel Towers
 - Add OHGW on Separate Structure
 - Add Line Arresters

- Lightning strikes on a wood pole line tap caused two double circuit momentary outages in one month causing two significant process shutdowns
- The 3 mile tap section
 - 5 open grounds on 64 poles
 - Strikes were recorded at sections good 10 Ω grounds
 - The pole grounds that were open were repaired
- Two additional storms occurred after the grounds were repaired causing two additional process shutdowns for the customer
- A fix was needed and <u>needed immediately</u> without shutting down the line

Double Circuit 138 kV Wood Pole Circuit

- Phase spacing 10'
 15' from top phase to OHGW, 9 feet to pole
- 8 suspension insulator units, type A11 (5-3/4" x 10")
- A <u>single down lead</u> (#2) from the OHGW wire to the ground
- One OHGW. The design is 7#6 AWG Alumoweld.
- A ground with a nomina 10-ohm resistance.

Lightning Strike to OHGW and Backflash Across Insulator

Increasing Insulator Length - Option 1 -STATIC WIRE • Option 1 - Increase 4 - 2 ± suspension insulator Increase Length of Insulator Reduces clearance Increases pole load length Reduces clearance Increases pole load ٠ : bells = 4" - 7" bells = 5" - 3/4" Requires outage to ۵ Costs ~ 10% of 5'-6"±2" original line cost CONDUCTOR improves performance in polluted environments ground rod

Add an Extra OHGW – Option 2

- Option 2 Add second OHGW
- Requires Arm on Top of Pole
- Significant load increase on poles
- Cost 20% of original line cost
- Outage required

Option 2 Improvement

- The OHGW Surge impedance of 2 wires is less than a single OHGW.
- The shielding angle for 2 wires is less than for 1 wire & will increase direct stroke protection

Install Phase Arresters – Option 3

- Option 3 Install phase arresters
- Dramatically improves performance under lightning
- Costly & requires outages to install
- Adds an element that can flashover, adds weight to pole and arms

Install Additional Down Lead – Option 4

- Option 4 Install additional down lead on pole
 - Least expensive,
 - Can be done live
 - Easy to install
- TFlash indicates that it is not as effective as other options – but good enough?

Comparison of Tower Surge Impedances

- Steel Structures will always produce the lowest surge impedance.
- Larger footings on the steel towers will also have lower footing resistance vs.a ground rod

Туре	Surge Impedance - Ohms	Height feet	Wire Radius feet	Dimensions of Towers				
One Wire	539	80	0.01229					
Two Wires	308	80	0.01229					
Z Pole	176	80		r = 6 ft				
Z (H frame)	138	80		2r = 6 ft b = 12				
Z Tower	127	80		2r = 6 ft				

Surge Impedance of Downleads

- Single Down Lead
 - #2 AWG copper wire, radius r = 0.01229 ft.
 - 80-foot long down lead = h
- \bullet Z_{surge} = 529.24 ohms
- Two Down Leads using two #2 AWG copper wires
 - 80 foot long = h
 - 2.5-foot separation from the existing down lead = D
- \blacktriangleright Z_{surge2} = 308.7 ohms
- The second lead reduces the total down lead surge impedance by 42%

Reliability and Cost of Improvements								
Options	Description	3 Mile Tap Annual Outage Rate 2 Circuits	Cost as % of New Line Construction					
Base option	Original Configuration	0.541						
1	Increase Insulator Length	0.364	10%					
2	Add OHGW	0.151	10%					
3	Install Line Arresters	0	20%					
4	Two Downlead	0.286	3%					

Summary

- TFlash model indicates:
 - Surge arresters are the most effective and most costly improvement
 - The least costly improvement is to add a second down lead.
 - -The model predicts a 55% reduction in the double circuit outage rate compared to the original installation

