

2. Three-Phase Distribution Network Voltage Regulation 10

To Maintain Nodal Voltage. with Input Variables Such as Voltage Regulators.

■However, It Is Hard to Determine the Appropriate Tap Positions Because the Tap Changes Bring about the Voltage Violation at the Secondary Side of the Regulator due to Discrete Variable Adjustment. 2. Three-Phase Distribution Network Voltage Regulation Continued)

11

A Set of Power Flow Calculations Are Needed to Maintain the Nodal Voltage within the Upper and the Lower Bounds.

The Trial-and-Error Method is Necessary to Evaluate Solutions.

Therefore, the Three-Phase Distribution Network Voltage Control Needs a Lot of Computational Effort to Maintain the Voltage Profile.

III. Three-Phase Distribution Power Flow

3.1 Concept of Three-Phase Backward-Forward Sweep Method.

Backward-Sweep is to Add up the Injection Currents from the Ending Node to the Distribution Substation.

Forward-Sweep is to Calculate the Nodal Voltage from the Substation to the Ending Node.

The Nodal Voltages are Evaluated by Repeating the Above Calculation Until the Convergence Criterion Is Satisfied. 12

Open Problems in Three-Phase Distribution Voltage Control

 The Power Flow Calculation Does Not Converge to a Solution in a Certain Power System Conditions.
 There are Some Cases that Voltage Regulator Tap Changes Are Not Appropriate Since the Change Triggers the Voltage Violation at the Neighbor Nodes .

15

4.3 Regression Tree

The algorithm of the regression tree consists of the following three steps:

19

Step 1: Grow a tree.

Step 2: Carry out pruning the tree.

Step 3: Select the optimal tree in candidates.

4.7 Algorithm of Proposed Method

The Target is to Evaluate a Feasible Three-Phase Power Flow Solution That Meets the Upper and Lower Bounds of Nodal Voltages: Phase 1(Creation of Learning Data)

25

26

Step 1: Set initial conditions for each nodal voltage.

Step 2: Compute the injection currents at each node

Step 3: Add up all the currents from the ending node to the substation.

4.7 Algorithm of Proposed Method (Continued)

Step 4: Calculate the nodal voltage from the substation to the ending node.
Step 5: Evaluate the power mismatch.
Step 6: Stop if the converged solution within the lower and upper bounds is obtained.
Otherwise, adjust the voltage regulators and return to Step 2.
Phase 2(Classify Accumulated Data into Terminal Nodes with the Regression Tree)

	11 A	AS I	11		31		
	Table 1 Obtained Rule at Each Splitting Node						
<u> </u>	t	Obtained Rules	t	Obtained Rules			
	1	YQL(2) 145779.453	11	TAP(2) 3.500			
	2	TAP(1) 10.500	12	TAP(1) 10.500			
	3	DQL(2) 147600.250	13	TAP(2) 4.500			
	4	TAP(5) 12.500	14	YPL(1) 137917.828			
	5	YPL(3) 151518.078	15	DPL(1) 150528.922			
	6	YPL(3) 146388.703	16	TAP(4) 11.500			
	7	TAP(4) 11.500	17	DPL(3) 148899.250			
	8	YPL(3) 153054.656	18	YPL(3) 157364.531			
	9	TAP(5) 13.500	19	DPL(3) 153884.625			
-	10	DPL(1) 146224.453	20	DPL(3) 148228.406			
		- Alerton					

t		Obtained Rules	t	Obtained Rules
1		YQL(2) 145779.453	11	TAP(2) 3.500
2		TAP(1) 10.500	12	TAP(1) 10.500
3		DQL(2) 147600.250	13	TAP(2) 4.500
4	-	TAP(5) 12.500	14	YPL(1) 137917.828
5		YPL(3) 151518.078	15	DPL(1) 150528.922
6	5	YPL(3) 146388.703	16	TAP(4) 11.500
7	r	TAP(4) 11.500	17	DPL(3) 148899.250
8		YPL(3) 153054.656	18	YPL(3) 157364.531
9)	TAP(5) 13.500	19	DPL(3) 153884.625
)	DPL(1) 146224.453	20	DPL(3) 148228.406

							34		
Table 2 Average Loss and No. of Data at Each Terminal Node									
			Y	~	1 - C				
	N_T	Ave. [kW]	No. of data	N_T	Ave. [kW]	No. of data			
	1	262.941	47	11	285.186	29			
	2	269.377	31	12	270.211	32			
	3	267.596	24	13	280.537	10			
	4	274.273	23	14	278.472	30			
-	5	272.198	18	15	286.787	11			
	6	281.299	11	16	275.127	29			
	7	277.115	36	17	282.001	28			
	8	287.91	6	18	291.63	8			
-	9	272.211	20	19	271.852	23			
	10	279.625	32	20	287.884	44			
				21	297.566	8			

References

- H. Mori and N. Kosemura, "Optimal Regression Tree Based Rule Discovery for Short-term Load Forecasting," Proc. of 2001 IEEE PES Winter Meeting, Vol. 2, pp.421-426, Columbus, USA, Jan. 2001.
- H. Mori, N. Kosemura, K. Ishiguro and T. Kondo, "Short-term Load Forecasting with Fuzzy Regression Tree in Power Systems," Proc. of 2001 IEEE International Conference on Systems, Man & Cybernetics, pp. 1948-1953, Tucson, AZ, U.S.A., Oct. 2001.
- H. Mori, N. Kosemura, T. Kondo and K. Numa ,"Data Mining for Short-term Load Forecasting," Proc. of 2002 IEEE PES Winter Meeting, Vol. 1, pp.623-624, New York, NY, USA, Jan. 2002.
 - H. Mori and Y. Sakatani, "An Integrated Method of Fuzzy Data Mining and Fuzzy Inference for Short-term Load Forecasting," Proc. of ISAP (CD-ROM), Limnos, Greece, Aug. 2003.
- H. Mori, Y. Sakatani, T. Fujino and K. Numa, "An Efficient Hybrid Method of Regression Tree and Fuzzy Inference for Short-term Load Forecasting in Electric Power Systems," A..Lofti and M. J. Garibaldi (Eds.), "Applications and Science in Soft Computing," pp. 287-294, Springer, Berlin, Germany, Nov. 2003.

