
1

H. Mori, K. Shimomugi and Y. Umezawa
Dept. of Electronics Bioinformatics

Meiji University
Tama-ku, Kawasaki 214-8571

Japan
hmori@isc.meiji.ac.jp

A Data Mining Technique for A Data Mining Technique for ThreeThree--Phase Phase 
Distribution Network Voltage ControlDistribution Network Voltage Control

IEEE  T&D2008 Panel 

OUTLINE
I. Objective
II. Background
III. Three-Phase Distribution Power 

Flow
IV. Proposed Method
V. Simulation
VI. Conclusion



2

I. OBJECTIVE
-- To To Proposed Proposed aa Data Mining Data Mining MMethodethod for for 

Clarifying Nonlinear Relationship between Clarifying Nonlinear Relationship between 
Control Variables and Estimating Network Control Variables and Estimating Network 
Loss in a Distribution NetworkLoss in a Distribution Network

?Control 
Variables

Fig. Fig. A A Cause and Effect of Input and Output Data   Cause and Effect of Input and Output Data   

Network Loss

-Rules?
-Knowledge?
-Feature Extraction?
…..

Fig. Fig. BB Characteristics of  Power SystemCharacteristics of  Power System ProblemsProblems

2.1. Complexity of Power Systems
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Fig. C Recent Complexity of Power Systems
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2.4 Intelligent Systems2.4 Intelligent Systems
Expert Systems
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Meta-Heuristics
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Learning

Optimization

Multi Agent Syst.

Data Mining

Distributed  
Systems

Knowledge 
Discovery in DB

Classification

Fig. D Research Activities of Intelligent Systems in IEEE PES
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2.5 Roles of Data Mining

To Understand Complicated Data with To Understand Complicated Data with 
Some RulesSome Rules

To Extract Important Features That are To Extract Important Features That are 
Known and/or UnknownKnown and/or Unknown

To Construct More Reasonable To Construct More Reasonable 
Models/StrategiesModels/Strategies

2.6 What PS Areas Is  Data 
Mining Applied to?

Dynamic Security Assessment Dynamic Security Assessment (Wehenkel, (Wehenkel, 
et al.,et al., ’’94; 94; Rovnyak and Thorp, ’94 )

Load Forecasting (Mori &  Kosemura,Load Forecasting (Mori &  Kosemura,’’01)01)

Power System Control Center Power System Control Center (Lambert(Lambert--
Torres, Torres, et al.,et al.,’’02)02)

Data Profiling of Customers (Kitamura, Data Profiling of Customers (Kitamura, et et 
al.,al.,’’02) 02) etc.etc.
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2. Distribution Automation

Optimal network reconfiguration[2,6]Optimal network reconfiguration[2,6]
Network loss minimization[3]Network loss minimization[3]
Voltage and reactive power control[1,5,10]Voltage and reactive power control[1,5,10]
Distribution network service restoration[4,9]Distribution network service restoration[4,9]
State estimationState estimation
Load estimation[7,8]Load estimation[7,8]

2. Three-Phase Distribution  Network 
Voltage Regulation

To Maintain Nodal VoltageTo Maintain Nodal Voltage with Input with Input 
Variables Such as Voltage Regulators.Variables Such as Voltage Regulators.

However, It Is Hard to Determine the Appropriate 
Tap Positions Because the Tap Changes Bring about 
the Voltage Violation at the Secondary Side of the 
Regulator due to Discrete Variable Adjustment.
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2. Three-Phase Distribution  Network 
Voltage Regulation Continued)

.
A Set of Power Flow Calculations Are Needed to 

Maintain the Nodal Voltage within the Upper and the 
Lower Bounds. 

The Trial-and-Error Method is Necessary to Evaluate 
Solutions. 

Therefore, the Three-Phase Distribution Network 
Voltage Control Needs a Lot of Computational Effort to 
Maintain the Voltage Profile.

III Three-Phase Distribution  Power Flow

3.1 Concept of Three-Phase Backward-Forward 
Sweep Method.

Backward-Sweep is to Add up the Injection 
Currents from the Ending Node to the 
Distribution Substation.

Forward-Sweep is to Calculate the Nodal 
Voltage from the Substation to the Ending Node.

The Nodal Voltages are Evaluated by 
Repeating the Above Calculation Until the 
Convergence Criterion Is Satisfied.



7

3 2 Algorithm

Step 1: Set the initial conditions of the nodal 
voltages.
Step 2: Evaluate the injection current at each 
node by the following equation:
.

(1)

Step 3:  Add up the node injection currents from 
the ending node to the substation.

(2)
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3 2 Algorithm( Continued)

Step 4: Calculate the nodal voltage from the 
substation to the ending node.

(3)

Step 5: Stop if the convergence criterion is 
satisfied. Otherwise, return to Step 2.
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Open Problems in  Three-Phase Distribution 
Voltage Control

The Power Flow Calculation Does Not 
Converge to  a Solution in a Certain  Power 
System Conditions.

There are Some Cases that Voltage 
Regulator Tap Changes Are Not Appropriate 
Since the Change Triggers the Voltage 
Violation at the Neighbor Nodes .

IV Proposed Method

A Set of 
Solutions

Different PS
Conditions

Trial & Error

Estimated Solution
Estimator

Given PS 
Conditions

Learning

Discovering Rules by Regression Tree

Data Mining

4.1  Outline of Proposed Method 

DBDB
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4. 2  Outline of DM

- Pattern Recognition 
(ANN)
- Fuzzy Theory
- Decision Tree, etc.

Data MiningData Mining

To Discover Important Rules 
in Large Data Base

Data Mining MethodsData Mining Methods

Fig. E  Decision Tree

Root Node
Split Node

Terminal Node

CART, ID3
C4.5

QualitativeClassification 

CARTQuantitativeRegression

Conventional 
MethodsOutputDecision Tree

Table A Difference between Classification 
and Regression Trees
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The algorithm of the regression tree consists 
of the following three steps:

Step 1: Grow a tree.

Step 2: Carry out pruning the tree.

Step 3: Select the optimal tree in candidates.

4.3  Regression  Tree

(A1)

• GrowthGrowth
Minimization of Error After Splitting

•• PruningPruning
Simple Structure of Regression Tree

•• Error EstimateError Estimate
Cross-Validation Method

0V
nVnR )()( =

R(n): Error of Node n
V(n): Variance of Learning Data Belonging to Node n
V0: Variance of All Learning Data

4.3  Regression  Tree (Continued)

(A1)
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Constructing the Tree

(5)( ) ( ) ( ) ( )RL tRtRtRtsR −−=Δ ,

R (t) 
R (tR)R (tL)

Fig. F  Process of Constructing Tree  

Where, R(s,t): Degree of Error Reduction in Case Where 
Attribute s at Node t s: Attribute, t: Parent Node, R(t): 
Sum of Squared Error of Parent Node R(tL(R)): Error of 
Left-side (Right-side) Child Node

s α No Yes

Error Reduction

Pruning

r(tp)=rCV(tp)+σ(tp)
Where, r: Error rCV( ): Cross-Validation Error σ( ): Standard 

Deviation of Cross-Validation Error tp : Pruned Tree 
Number

(2)

Fig. G  Pruning Process

tp: 1 tp: 2 tp: 3
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The variable importance shows the rate of   the error 
reduction to the whole. It may be written as :

(9)
where
VI(x): variable importance of input variable x
X:  set of input variables
Ns: set of split nodes
i(x,t): degree of improvement of input variable x at node i

4.4  Addition Information of 
Regression  Tree

(A1)
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We Can Identify 
Important variables 
by the Index

A Set of 
Solutions

Different PS
Conditions

Trial & Error

Estimated Solution
Estimator

Given PS 
Conditions

Learning

Discovering Rules by Regression Tree

Data Mining

DBDB

Phase 1

Phase 2

Adjust Control Vrbls

4.6 Outline of Proposed Method 
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The Target is to Evaluate a Feasible Three-
Phase Power Flow Solution That Meets the 
Upper and Lower Bounds of Nodal Voltages:
Phase 1(Creation of Learning Data)
Step 1: Set initial conditions for each nodal 
voltage.
Step 2: Compute the injection currents at 
each node
Step 3: Add up all the currents from the 
ending node to the substation.

4.7 Algorithm of Proposed 
Method 

(A1)

Step 4: Calculate the nodal voltage from the 
substation to the ending node. 
Step 5: Evaluate the power mismatch.
Step 6: Stop if the converged solution within 
the lower and upper bounds is obtained. 
Otherwise, adjust the voltage regulators and 
return to Step 2.
Phase 2(Classify Accumulated Data into 
Terminal Nodes with the Regression Tree)

4.7 Algorithm of Proposed 
Method (Continued)

(A1)
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Sample System: Modified  IEEE Three-Phase 34-
node Distribution System
Modification:

Branch between Nodes 882 and 888  has 100ft. 
Feeder Rather Than the Transformer.

There are two voltage regulators .One tap 
raises 0.75V in 120V base.

Nodes 844 and 848 have Three Kinds of 
Capacitor banks: 50kVar, 100kVar,  and 150kVar

Two Loads at Nodes 844  and 890 are 
Randomly Changed(Gaussian , original data +20% )

# of PS Conditions :  500

V. SIMULATION
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Voltage Regulators

Random Loads

Fig. 1 IEEE 34-node System

(122+1V)

(124+1V) 

Capacitor Banks
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Input Variables
YPL(1~3): three-phase active load at node 844
YQL(1~3): three-phase reactive load at node 

844
DPL(1~3): three-phase active load at node 890
DQL(1~3): three-phase reactive load at node 890
TAP(1~3): voltage regulator taps 1~6
CAP(1~6): capacitor banks 1~6

Output Variable
Active Power Network Loss

V. SIMULATION
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Fig. 2 Constructed Tree
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DPL(3)�148228.40620DPL(1)�146224.45310
DPL(3)�153884.62519TAP(5)�13.5009
YPL(3)�157364.53118YPL(3)�153054.6568
DPL(3)�148899.25017TAP(4)�11.5007

TAP(4)�11.50016YPL(3)�146388.7036
DPL(1)�150528.92215YPL(3)�151518.0785
YPL(1)�137917.82814TAP(5)�12.5004

TAP(2)�4.50013DQL(2)�147600.2503
TAP(1)�10.50012TAP(1)�10.5002
TAP(2)�3.50011YQL(2)�145779.4531
Obtained RulestObtained Rulest

Table 1 Obtained Rule at Each Splitting Node

DPL(3)�148228.40620DPL(1)�146224.45310
DPL(3)�153884.62519TAP(5)�13.5009
YPL(3)�157364.53118YPL(3)�153054.6568
DPL(3)�148899.25017TAP(4)�11.5007

TAP(4)�11.50016YPL(3)�146388.7036
DPL(1)�150528.92215YPL(3)�151518.0785
YPL(1)�137917.82814TAP(5)�12.5004

TAP(2)�4.50013DQL(2)�147600.2503
TAP(1)�10.50012TAP(1)�10.5002
TAP(2)�3.50011YQL(2)�145779.4531
Obtained RulestObtained Rulest

Table 1A Obtained Rule at Terminal Node 11

IF YQL(2) 145779.453, TAP(1) 10.500,  and
YPL(3) 151518.078, Then Network Loss is 285.186KW.
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Fig. 3 Variable Importance for Input Variables

YPL(3)
YQL(2) TAP(2) TAP(5)YPL(1)

100

80

Input  Variables

Table 2 Average Loss and No. of Data at Each Terminal Node

8297.56621
44287.8842032279.62510
23271.8521920272.2119
8291.63186287.918

28282.0011736277.1157
29275.1271611281.2996
11286.7871518272.1985
30278.4721423274.2734
10280.5371324267.5963
32270.2111231269.3772
29285.1861147262.9411

No. of dataAve. [kW]NTNo. of dataAve. [kW]NT
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Fig. 4  Relationship between Node # and Average Active 
Power Loss at Terminal Nodes 
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This paper has proposed a data mining technique for 
distribution network voltage regulation. The proposed 
method efficiently extracts rules for dealing with 
distribution network loss minimization. This paper 
presented a regression-tree-based method that 
clarifies the nonlinear relationship between control 
variables and the network loss in a three-phase 
distribution network. 
The proposed method was applied to the IEEE 34-node. 
A regression tree is constructed to find out rules in a 
distribution network voltage regulation. The simulation 
results have shown that a set of network conditions 
are optimally classified into the terminal nodes with if-
then rules and the importance of input variable was 
clarified by the index That allows distribution network 
operators to understand the network conditions 

VI. CONCLUSIONVI. CONCLUSION
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