

IEEE PES Transmission and Distribution Conference 2008

Panel Session – "Large Wind Plant Collector Design"

Wind Farm Collector System Grounding

by

Steven W. Saylors, P.E. Chief Electrical Engineer Vestas Americas

Need For Adequate Grounding

A well designed grounding system serves to:

- 1. Establish an effective reference to earth potential for normal operation of
 - electrical & communication equipment
 - controls
 - protective devices (circuit breakers, fuses)
- 2. Limit voltage differences to values that will not cause undue hazards to personnel and equipment
- 3. Protect the wind turbine against lightning damage
- 4. Limit galvanic corrosion due to dissimilar metals

Collector System Engineering & Design

- Soil Resistivity
 - ranges from 10s to 1000s of ohm-meters
- Size of Cable Neutral/Shield
 - 1/3, 1/2, full size
- Cable Insulation Rating
 - 100%, 133%, 173%
- Expected Fault Duty
 - seeing higher levels due to
 - greater Duty from power offtaker at POI
 - larger park ratings 100s of MW)
- Underground versus Overhead Constructions

Connecting the Collector System to the Grid

- Grounding Transformers
 - Provide return path for ground fault current
 - Convert \pm sequence current to zero sequence current
 - Prevent Voltage Elevation on un-faulted phases
 - Eliminate ferroresonance
 - Create an effectively grounded system
 - Winding Configuration Zig-Zag or Wye-Delta
 - Sizing
 - Feeder Circuits: ~5% of connected feeder load
 - \therefore 30MVA collector circuit = 1.5MVA Grounding Transformer

Connecting the Collector System to the Grid

 Collector Circuits – Feeder Grounding Transformers

-Ground Current Source

-Connected on the WTG Side

-One Per Feeder

Connecting the Collector System to the Grid

- Delta Connected Systems
 - Source of ground fault current NO
 - Difficult to detect & locate ground faults
 - Elevated voltages (1.73pu or L-L) on un-faulted phases during fault conditions
 - Results in damaged equipment
 - Arrestors
 - Power Electronics
 - Cable Insulation
 - SOLUTION GROUNDING TRANSFORMERS
 - SOLUTION C-B WITH HIGH SPEED GROUND SWITCH
 - Within ~1 cycle of breaker trip all 3 phases are grounded

Connecting the Collector System to the Grid

- Grounded-Wye Connected Systems
 - Source of ground fault current YES (Temporarily)
 - Source is removed as the faulted feeder circuit-breaker is tripped
 - WTGs will continue to generate for several cycles until removed from the circuit
 - Faulted feeder remains energized with elevated voltages on un-faulted phases

- SOLUTION - GROUNDING TRANSFORMERS

- Continue to supply zero sequence fault current until the fault is cleared thus eliminating over-voltages
- SOLUTION C-B WITH HIGH SPEED GROUND SWITCH
 - Within ~1 cycle of breaker trip all 3 phases are grounded

