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11 Operating Configurations

CSC Schematic Structure

I. Introduction: Convertible Static 
Compensator (CSC)

(Sh1) Voltage control mode
(Sh2) Var setpoint control mode

– Series Standalone– Shunt
(Se1) Line P setpoint mode
(Se2) Fixed injected voltage 

magnitude mode

– Series Coupled
(SeC1) Line P,Q setpoints mode
(SeC2) Fixed injected voltage 

(Vd,Vq)
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II. Control Schemes – Shunt VSC
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k1 is set to a constant

In steady state, αsh is a 
constant

Transient deviations of αsh
cause nonzero active 
power to go through the 
DC capacitor and thus 
result in a change of Vdc
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Control Schemes – UPFC Series VSC

Line P,Q Control Mode

Inverter Voltage Control Mode
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Both the DC-to-AC 
ratio of the inverter 
and the phase angle 
of the inverter 
output voltage are 
controlled

• UPFC shunt VSC control structure is same with the STATCOM:
─ But αsh can be a nonzero value in steady state

• UPFC series VSC:
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Positive-Sequence Time-Domain Simulation

YVVxxI =),,( VSC

Overall System Equations

• Generators, exciters, governers, and other power system 
controllers such as power system stabilizers (PSS)

• DC link capacitor dynamics and the VSC controls

• Power system network, loads

),,( VSCVSCVSC Vxxfx =
•

),,( VSC Vxxfx =
•
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• 6 generators (northwest) 
and 3 loads (southeast).

• UPFC Bus 4, Line 4-11

• Base load on Bus 17: 
2500 MW

• Gradually Increase Pload
on Load 2, and Pgen on 
G1, G2, and G3.

• Single-phase line-to-
ground fault on Bus 3 at 
t = 0.1 s and trip Line 
3-13 after 4 cycles

22-Bus Test System
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UPFC

Load 1
Load 2

22

G 1

G 2

G 3

G 4

G 5

G 6

Marcy
345 kV

New Scotland
345 kV

Coopers Corners
345 kV
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Fault: A single-phase LG fault at Bus 3 at time t = 0.1 s and trip Line 3-13 after 4 cycles

90514733340(sh) Vref = 0.91 pu
(se) Vdref = 0 pu, Vqref = -0.055 pu

UPFC
V,Vd,Vq

90414693343(sh) Ishqref = 1.0 pu
(se) Vdref = 0 pu, Vqref = -0.055 pu

UPFC
Var,Vd,Vq

90413903235-No FACTS

Line 4-
12

Line 4-
11

Line Power 
Transfer (MW)

Maximum 
Load on 
Bus 17 
(MW)

SetpointsConfigurati
on

22-Bus Test System
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Dynamic Simulation
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Line 4-12 Active Power Flow

No FACTS
UPFC VVdVq

No FACTS v.s. UPFC V,Vd,Vq Mode at same loading conditions PL2=3235 MW.

The UPFC results 
in much better 
system voltages and 
power flows.
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III. Small-Signal Linearized Models
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Overall System Equations

State Matrix Building
The integration part in the 
nonlinear simulation is replaced 
by a sequential perturbation of the 
state and input variables.

Share a common set of codes with dynamic models for FACTS 
controllers, generators, and exciters.  
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20-Bus NY Test System

-62.01.035120 (G5)

-581.044819

-51.61.018618

-59.51.035517

-56.61.029416

-46.11.036715

-45.81.037714

-37.01.045113

-20.81.031212

-20.71.031211

-38.661.045210

-41.61.03759

38.31.04298 (G4)

-33.31.03367

-36.91.04506

-16.01.0355 (G3)

-20.71.03124

-20.61.03093

6.41.07282 (G2)

-3.31.06461 (G1)

Volt Angle 
(degree)

Volt Mag.  
(pu)

Bus #4
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VSC 2

Load 1
Load 2

VSC 1

G 1

G 2

G 3

G 4

G 5

VSC 3

522

1433

786

628

1177

1526
2700

59
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Eigenvalues of the Linearized Model

0.050

0.051

0.038

0.160

Dmp
Ratio

1.483

1.070

0.925

0.284

Freq
(Hz)

∆ω and ∆δ of G3-0.471±j9.3216,17

∆ω and ∆δ of G2 and G1-0.35±j6.7212,13

∆ω and ∆δ of G5 and G1,2,3-0.22±j5.8110,11

∆ω and ∆δ of G4-0.29±j1.796,7

Dominant StatesEigenvaluesMode 

Total 40 states: 6 generator states and 2 exciter states for each machine 
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IV. Complete Modal Decomposition
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is the mode of interest.

iii jωσλ +=

Limitation: the transformation requires that A be 
diagonalizable. A sufficient condition for 
diagonalizability is that A has no repeated eigenvalues.
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Complete Modal Decomposition

It decouples all system modes

Note that for a specific mode of interest, 
the inner-loop sensitivity contains the 
effect of other swing modes to this mode, 
in addition to network effect

• Kci(s): controllability transfer 
functions for the inter-area mode i

• Koi(s): observability transfer 
functions for the inter-area mode i

• KPSDC(s): the transfer function of 
damping controller

• KIL(s): the inner-loop transfer 
function from u to y

Koi(s)

KILo(s)

Inner Loop
Feedback

KPSDC(s)
u

Power System Damping Controller

y

Kci(s)

+
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Effective Control Action
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V. Damping Controller Design

• Damping input signal selection based on effective 
control action

– local and remote signals
local signals: bus frequencies, bus voltages, and line  
currents and power flows
remote signals: remote bus angles, can be measured using 
phasor measurement units (PMU), or synthesized from local 
signals using bus voltages and line reactances

– Two indices for selecting a feedback variable y
MDI Index: indicates the effectiveness of measurements 
having high observability gain and low inner-loop gain 
Index |Kci(ω)Koi(ω)|: indicates that as k increases from zero, 
the larger this index is, the faster the control effect changes

• Damping controller components
• UPFC damping controller design example
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Damping Controller Components

Error signal
+

1
1+Tf s 1+Tds

1+Tns
1+Tws

Tws Measured
signal yk

+Damping
signal u

FACTS
Regulator

Power
System

umax

umin
Gf (s) Gp(s) Gw(s)

KPSDC(s)

Damping controller: consists of a washout loop Gw(s), a 
phase compensator Gp(s), a lowpass (LP) filter Gf (s), a 
constant gain k, and saturation limits [umin, umax].
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MDI Index for the UPFC
UPFC on Bus 4, Line 4-11

MDI Index

14.8416.3458.5460.1758.4367.95Im4-11

15.4316.8221.0822.8125.0926.10P4-11

4.103.375.584.825.754.92V4

Shunt
Var Mode

Shunt
V Mode

Shunt
Var Mode

Shunt
V Mode

Var ModeV Mode

UPFC
Series P,Q Mode

UPFC
Series Vd,Vq Mode

STATCOM

Local 
Signals

Im4−11 as the damping input signal to the shunt regulator
has the highest MDI indices for the STATCOM and for the
UPFC in the Vd,Vq mode.
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UPFC Damping Controller Simulation
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VI. Conclusions

• UPFC, when appropriately controlled, can 
substantially improve the transient power 
transfer capability of transmission system 
during a system disturbance.

• The fixed injected voltage control is 
advantageous when compared with the line 
flow control mode for damping control


