

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

The 5th International IEEE Vehicle Power and Propulsion Conference

Gus Khalil US Army TARDEC Hybrid Electric program

UNCLAS: Dist A. Approved for public release

Background

1900 Lohner-Porsche 4x4 Hybrid Vehicle

1943 T-23 Electric Drive

1943 Elephant Tank Electric Drive

1995 Hybrid HMMWV

2008 NLOS-C hybrid electric MGV *TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED*.

Power & Energy Trends

The Challenges

- Battlefield consumption of energy increasing
 - New C4ISR technologies
 - IED Defeat Systems
 - New weapons (EM guns, lasers)
- Energy security problematic
 - Increasing dependence on foreign oil
 - Alternative sources sought wind, solar, bio-mass, waste to energy
- Operational issues
 - Battery usage & limitations energy & power density
 - Demand for auxiliary power on-board vehicles
 - Emphasis on silent ("quiet") watch
 - Unmanned vehicles (air/ground)
 - Unattended sensors
 - Inefficient management/ distribution of power
 - Demand for soldier-wearable power
- Increased emphasis on system power metrics (KPPs, low consumption components)

The US: Our Increasing Reliance on Fossil Energy Imports

Military Environment

Vehicle Speed

Field Testing

Aberdeen

CRTC

Robust

Environment

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Hybrid Electric Payoffs

- Onboard and Export Power
- Fuel Economy
- Flexibility and Packaging Efficiency
- Synergy with Pulsed Power Loads
- Silent Operations

RDECOM Onboard and Export Power

Hybrid HMMWV powering a Tactical **Operations Center**

Onboard power from ISG

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Fuel Economy

Typical Diesel Engine Fuel Map

2. Brake Energy Recovery

TORQUE (Nm)

Fuel Economy Measurements

COURSE DESCRIPTIONS:

Churchville B:

- Hilly cross-country
- Longitudinal grades up to 29%

- Improved gravel, paved
- Longitudinal slopes of 5% and 30%

Based on the given statistical models of the test data over the range of speeds, the Hybrid HMMWV showed the following % improvement in Mean Fuel Economy over the Conventional HMMWV:

> Munson: 4.2% [Common interval 5.1-30.7 mph]

> Churchville B: 10.9% [Common interval 5.1-25.0 mph]

Design Flexibility

- Most of the connections are wire
- Minimum rigidity
- Modular architecture

Silent Operations

Electric Drive Can Reduce Thermal, Acoustic and Exhaust Signatures

- Stealth operation and true silent watch for extended periods.
- Engine speed independent of vehicle speed — only as fast as needed to meet power requirement.
 - Engine normally runs at lower, more constant speed
 - Tuned exhaust system for improved noise attenuation
 - Reduced exhaust smoke and thermal signature
- Flexibility for configuring the hull frontal shape.
- No hydraulic pump noise from mechanical transmission.
- Lower cooling fan noise.

Comparison of conventional (top) and hybrid-electric drive combat vehicles

Challenges

- Thermal Management
- Cooling System Size and Complexity
- Power Density and Specific Power
- Energy Storage
- Reliability
- Cost

Temperature Impact on Cooling System

Radiator Volume vs. Coolant Temperature

For One 400 kW Traction Inverter

- 70 °C to 95 °C => 56% reduction
- 95 °C to 130 °C => 44% reduction

Approximate Northrop Grumman calculations for 600 shaft hp (about 500-550 kW Inverter)

Silicon Carbide Development

SiC Motor Inverter

Hybrid Si/SiC Converter

- High junction temperature operation ≥ 175°C
- High frequency ≥ 50 kHz
- High efficiency
 - Lower on-state resistance
 - Faster reverse recovery
- More robust and higher reliability

Current SiC Converters (APEI)

Energy Storage

Specific Energy, Wh/kg

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Technology Goals

Thank you!