Advanced Soft Switching for High Temperature Inverters

Plenary Presentation at The 5th IEEE Vehicle Power and Propulsion Conference (VPPC'09)

Jih-Sheng (Jason) Lai, Professor Virginia Polytechnic Institute and State University **Future Energy Electronics Center** 106 Plantation Road Blacksburg, VA 24061-0356

Outline

- 1. Background DOE FreedomCAR Program
- 2. System Level Design Tradeoff
- 3. HEV Thermal Management System Design **Considerations**
- 4. Power Semiconductor Device Characteristics under **Different Temperature Conditions**
- 5. Efficiency and Loss Evaluation for Temperature Prediction
- 6. Summary

Background – DOE FreedomCAR Program Inverter Target

Goal: Electric Propulsion System with a 15-year life capable of delivering at least 55 kW for 18 seconds and 30 kW continuous at a system cost of \$12/kW peak with a 105°C inlet coolant temperature by 2015*.

APEEM R&D Activities:

- Electric Traction Drive
 - Electric Machines Motors and Generators
 - Power Electronics Inverter and Boost Converter (if needed)
 - Thermal Control Key Enabling Technology
 - Vehicle Power Management
 Bi-Directional Multi-Voltage DC-DC
 Converter

55-kW System at 105 °C			
	2015 Targets	Camry	R&D Pathways
Cost (\$)	660	3740	858
Weight (kg)	45.8	91.7	45.8
Volume (I)	157	33.3	12.5
Efficiency (%)	93	88	91

Source: DOE Vehicle Technology Program – APEEM 2009 Kickoff Meeting

System and Component Level Cost Trade-off with Consideration of Thermal Management System

- Dual cooling loops (70°C plus 105°C)
 - Need dual thermal management systems, penalty on system level cost, size and weight
- Single cooling loop with 105°C coolant
 - Need to beef up silicon or use wide bandgap devices, penalty on component level cost
 - Need to use high temperature bulk capacitors, penalty on component level cost, size and weight
 - Need to design circuit with high temperature rating, penalty on component level cost

3

Possible Solutions with Single 105°C Coolant Loop

- Loss reduction by reducing switching frequency will result in high motor current ripple and associated loss thus reducing the entire drive efficiency.
- Loss reduction by increasing device switching speed will result in high dv/dt, di/dt and associated EMI and common mode current issues.
- Emerging SiC and wide band-gap devices for high temperature operation is not cost effective today.
- Junction temperature reduction by reducing thermal impedance it helps but not enough.
- Advanced soft switching with silicon devices to achieve significant loss reduction – a cost-effective way.

5

Proposed Approach

- Develop a variable timing controlled soft-switching inverter for loss reduction.
- A hybrid soft switch module for conduction loss reduction.
- Develop low thermal impedance module with integrated heat sink for high temperature operation.
- Develop a highly integrated soft-switch module for low cost inverter packaging.
- Modeling and simulation for design optimization.
- Test the soft-switching inverter with existing EV platform and dynamometer for EMI and efficiency performance verification.

Timing Diagram with a Variable t_{don} Defined as Variable Timing Control

Variable Timing Controlled Soft-Switching Verified with Simulation and Experiment

- Turn-on delay t_{don} controlled by zero-voltage crossing detection. Larger current, longer delay.
- Gating time after reaching zero voltage t_z is fixed

Variable Timing Soft Switching over a Wide Load Current Range

- During turn-on, current I_C rises after voltage V_{CE} drops to zero
- During turn-off, V_{CF} slowly rises after I_C drops to zero
- Variable timing achieves soft-switching at all current conditions
- Bonus slow dv/dt that will result in low EMI emission

9

Conduction Loss Reduction with a New Hybrid Soft Switch Module

- Hybrid switch reduces conduction loss reduction over a wide range of current and temperature condition
- Integrated module with direct cooling to reduce thermal resistance
- ✓ Higher temperature, lower voltage drop → ideal for high temperature operation
- ✓ Compared with commercial modules: 1.46V versus 1.67V drop @400A (13% reduction)

Switching Loss Reduction Using LPT IGBT

- For hard switching, as compared to 25°C operating condition,
 - Device switching loss is increased by 40% at 100°C
 - Device switching loss is reduced by 80% under soft switching
- Losses in soft switching are due to layout parasitics with discrete components – necessary to integrate the soft switch module

11

Direct Cooled Module Based Soft-Switching Inverter Assembly

- Direct cooled module no heat sink is required, but a custom-made water manifold is needed
- DC power bus bar and capacitors are placed on top of modules to reduce parasitic inductance
 - Gate drive board snapped on top of the modules to avoid parasitic

Power Meter Measured Peak Efficiency Exceeds 99% at Low Relatively Low Power Condition

Test condition: $V_{dc} = 325 \text{ V}, f_{sw} = 10 \text{ kHz (PWM)}, f_1 = 83.3 \text{ Hz}, T_a = 25 ^{\circ}\text{C}$ Accuracy of Instrumentation: $\pm 0.2\%$

Using well calibrated power meter, the measured peak efficiency of the inverter exceeded 99% at room temperature condition.

13

Projected Efficiency Using Loss Measurement with Inductor Load Test

Test condition: DC bus voltage: 325 V dc

Switching frequency: 10 kHz

Load inductance: 2.4 mH per phase

Modulation index: 0.2 to 1.15

Efficiency Measurement using Ratiometric Calorimeter

Calorimeter Tested Efficiency Plots over a Long Period of Time

- Using integrated module with light-weight water manifold for the fullversion soft-switching inverter.
- Calorimeter chamber inlet and outlet temperatures stabilized after 6-hour testing. Chamber temperature differential was 1.6 °C under 0.3 GPM flow rate.
 - Efficiency exceeded 99% at full speed, 33% load torque condition.

Soft-Switching Inverter Testing with Motor Dynamometer

- The soft-switching inverter has been tested with the 55-kW motor dynamometer set
- · Rigorous test with different torque commands and instant speed reversal

17

Using FEA to Predict Temperature for Soft-Switching Inverter

- Simulated hot spot junction temperature consistent with theoretical calculation: 120°C or 15°C temperature rise
 - Circuit components inside the chassis see temperature between 65°C and 85°C

Summary

- The advanced soft-switch module demonstrates
 - 13% conduction loss reduction
 - 80% switching loss reduction
 - 60% thermal impedance reduction
- The advanced soft-switching inverter with variable timing control demonstrates high efficiency over a wide speed and torque range
 - Soft switched inverter power losses are roughly a factor of 3 less than that of the hard switched inverter
 - Calorimeter test verifies that peak efficiency exceeds 99%
- FEM analysis and projection indicate
 - Less than 15°C junction temperature rise
 - 105°C coolant operating at full load is possible

19

Questions

