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Why Are Power Transistors So Important?

Power amplifiers typically dominate transmitter/system characteristics:

• DC power consumption

• Power dissipation (heat)           thermal load

• Reliability stressful operating conditions

- High junction/channel temperature

- High DC operating voltage (relative to other functions)

- Large AC signals

• Cost

- Power MMICs typically have largest chip area, highest chip count

- Power MMICs typically are lowest yield, highest cost ($/chip, $/mm2) 

of MMIC types due to large size, high periphery
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– Based on MOSFET technology

– Low cost, proven performance, reliability

– Low source inductance using p-type sinker

– Field plate for increased gain

– Multi-generation performance improvement continuously has increased 
frequency of operation
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Current Generation Silicon LDMOS



GaAs Pseudomorphic HEMT (PHEMT)

• First demonstrated for microwave

power in 1986

• Inx Ga1-x As channel, with 0.15    x    0.30

- Enhanced electron transport

- Increased conduction band discontinuity,

allowing higher channel current

- Quantum well channel provides improved

carrier confinement

• Power devices typically use “double heterojunction”

layer structure

• Material grown by MBE or MOCVD

• Used for power amplifiers from 0.9 to 80 GHz

• Enhancement mode (E-mode) PHEMT for cell-

phone PAs -- single supply voltage

Conduction Band Profile

Typical Power PHEMT
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InP HEMT

• Millimeter-wave operation first demonstrated

in 1988 (low noise)

• Based on InGaAs/InAIAs material system on 

InP substrate

- InGaAs channel with 53% In (lattice-matched), 

80% In (pseudomorphic),

100% In (strained pseudomorphic) 

- Enhanced transport, large conduction  band

discontinuity

• High current (1A/mm), very high transconductance

(3000 mS/mm) demonstrated

• Sub-Millimeter Wave frequency response

fmax = 1500 GHz, ft = 610 GHz

• Low breakdown for single recess (low bandgap of InAIAs gate layer)

• Double-recess devices have been reported

• Metamorphic HEMT (MHEMT) – InP HEMT on GaAs Substrate

• Superior PAE and power gain demonstrated at 20-1000 GHz
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• Grown on SiC substrates

• Heterojunction with undoped channel

• Electron mobility µ = 1500 cm2/V-sec

• High surface defect density (107-108/cm2)

• First GaN HEMT MMIC reported in 2000

• Millimeter Wave frequency response

fmax of 230 GHz, ft of 97 GHz

• Very high power density demonstrated >10W/mm

• Thermally limited device

GaN HEMT
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Best Reported Microwave Transistor Efficiencies

High Gain Enables High Efficiency Modes of Operation:

Class AB2, Class B, Class C, Class F
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Small periphery (gate/emitter)
Short gate/emitter fingers
Low parasitics

“Building block” for higher power
Longer fingers
Characterized for power amplifier

design

Full MMIC:  all
matching on-chip

Power amplifier or T/R 
module
MIC power combining 
(typ. 2 to 8-way)

Intrinsic Device
(single finger)

Power 
Transistor 

“Cell”

Module

Hybrid Power
Amplifier

Power MMIC

Constrained 
Combining 
(Plumbing)

Spatial 
Combining 

(Phased Array/ 
Quasioptics)

Each MMIC feeds separate
radiating element

(typ. 100s-1000s of elements)

Waveguide/Radial 
Combiners

W/G: 2 to 32-way
Radial: to 128-way

Discrete device:
all matching

off-chip

Integration to Higher Power Levels
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of Circuit Design
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Circuit Design
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Circuit Design
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Circuit Design
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Circuit Design
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near saturation at high efficiency.



Power Gain at 150 Watts ~ 12.5 dBPush-Pull with Ferrite Loaded Coax Baluns

150 Watt 110-450 MHz Si LDMOS Power Amplifier
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S-Band GaN HEMT High Power Amplifier

Frequency = 2.9 GHz

Pout ~ 800 Watts

Bandwidth > 2.9 to 3.3 GHz

Vds = 65 V

Idsq = 2 A

PW = 200 usec

Duty Cycle = 10 %

slide 19



Ka-Band 0.2 m NFP GaN HEMT MMIC HPA

slide 20

• Process: 0.2 um NFP GaN HEMT

• Frequency Range:  34 to 36 GHz

• 14.8 - 15.8 Watts Pout

• 21% PAE

• Design Details

• Quadrature Balanced

• Fast gate switching FRAP bias network

• Vds = 20 to 34 Volts

• 5.4 mm periphery, Idsq = 200 mA/mm

• Chip Size: 4.568 mm x 4.025 mm x 55 um

Highest MMIC CW Power Reported at Ka-Band



W-Band 0.15 m GaN HEMT MMIC HPA
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0.15 mm – 0.3 mm – 0.6 mm

• Process:  0.15 m GaN HEMT

• Frequency Range:  84 to 95 GHz

0.5 to 0.8 W @ 10-15 % PAE (2010)

1.5 to 1.8 W @ 17.8 % PAE (2012 8-way) 

http://www.hrl.com/index.html
http://www.hrl.com/index.html


1 THz InP HEMT MMIC

Ten stage InP HEMT MMIC

S-Parameters

• Process:  25 nm InP HEMT

• Application:  THz

• Frequency Range:  0.95 to 1.05 THz

Pout 0.25 mW (estimated) 

• Chip Size:

550 um x 350 um x 18 um (WR-1.0 version)

• 8 um transistor cell 

• 2 fingers x 4 um

• CPW MMIC
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Coaxial Waveguide Spatial Power Combiner
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W-Band SSPA
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SSPA with the air-cooling fins attached. Mass of this unit is 

0.47 kg and its dimensions are 2.4 inches dia x 2.5 inches. 

Two-chip module binary WG septum combiner, transitions, bias 

networks. Module dimensions are 2.05 x 0.57 x 0.19 inches. 

J. Schellenberg, et al., “37 W, 75-100 GHz GaN Power 

Amplifier,” IMS 2016 Sym. Dig., May 2016.



EIRP = Ge x Pe x N2
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High Power Solid State Transmit Technologies

(not including Phased Arrays)

GaN potential -- 10X increase in MMIC and SSPA power, 1-100 GHz
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Future Trends

• Circuit Technique Development & Implementation

• Multi-tone with controlled distortion

• STAR:  Simultaneous Transmit and Receive

• Sub-Millimeter Wave Applications

• Thermal

• Near Junction Thermal Transport (NJTT) – GaN on Diamond

• Thermal Ground Plane (TGP) -- alloy heat spreader

• IntraChip/InterChip Enhanced Cooling (ICECOOL) -- convective or 

evaporative microfluidic cooling built directly into devices or packaging

• Microtechnologies for Air Cooled Exchangers (MACE) – enhanced 

heatsinks

• Active Cooling Module (ACM) – miniature refrigeration systems based 

on thermoelectric or vapor-compression technologies

• Semiconductor Devices

• Evolutionary

• Diamond

• Graphene, Carbon Nanotube

• Boron Nitride

• ? ? ?
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