Trends and Prospective in Risk and Reliability Engineering Research

Mohammad Pourgol-Mohammad, Ph.D, PE

Senior Reliability Manager Johnson Controls Inc. York, PA Associate Professor of Risk and Reliability Sahand University of Technology Tabriz-Iran

> Invited Speech at IEEE Reliability Section MIT Lincoln Laboratory Boston, Dec. 13, 2017

Outline

- Engineered Systems
- Failure and Complexity
- Failure and Damages
- Frontiers in:
 - Reliability Engineering
 - Risk Analysis
 - Prognosis and Health Management (PHM)
 - Resilience

Engineered Systems

Engineered Systems; Closer Look

Defining the Subject of Analysis

Generalized Concept of Risk Scenario

6

Conceptual Probabilistic Model of System Evolution

Anatomy of a Risk Scenario

Problem statement

Failures

Loss of revenues

Unplanned shut-down, D.C. Cook NPP

Fatalities and contaminations

Oil rig explosion in 2010, Gulf of Mexico

Problem statement

Relevance of the Problem

According to Network Rail (UK), rail infrastructure failures and defects are responsible for 14 million minutes of delay per year

Delays in civilian aircraft industry cost 22
 billion US \$ in 2011

Nuclear industry (France)

12

Where Do Failures Originate

Engineers--can you really reduce problems working only on the hardware?

* Source: ASME National Board Bulletin, Summer 2002, Volume 57, Number 2, Page 10, "Ten Years Of Incident Reports Underscore Human Errors As Primary Cause Of Accidents", http://nationalboard.org/SiteDocuments/Bulletins/SU02.pdf

Reliability Engineering

- Determine why and how systems and processes fail
- Measure, track, and *predict* levels of reliability in various phases of system/process life cycle
- Improve system/process reliability by removing failure causes
- Provide *input to decision* makers on how to achieve the above objectives in an optimal way

Methods of Reliability Engineering

- 16
- Understanding why and how things fail
 - "science of failure"
 - Materials, Physics of Failure, Human Behavior
- Life Prediction Statistical and Probabilistic Methods
- System Logic Modeling and Failure Path Identification
 Fault Tree, Reliability Block Diagram,
 - Event Sequence Diagrams
- Probabilistic Physics of Failure
- System/Process Multi-scale Probabilistic Simulation

Methods for Reliability Improvement

- Design for Reliability
 - Failure Mechanism Prevention
 - Redundancy and Functional Diversity
 - Fault Tolerance
- Reliability Growth
- Preventive Maintenance/RCM
- Health Monitoring

Key Areas of Research: Reliability

- Issues with the Traditional Field / Test Data
 - -"One Size Fits All" concept! E.g., Constant Failure Rate
 - Reliability Estimates Rarely Match Reality
- Probabilistic Physics-of-Failure (PPoF)
 - More than 50-Years of History in PoF (More Recently PPoF)
 - Accelerated Reliability Testing for PPoF Model Development
 - Empirical Model for Unit-Specific Models of Reliability Assessment
 - Simulation-Based Reliability Assessment / Numerical Complexity

Key Areas of Research: Reliability

Hybrid Reliability

- Combined System Analysis Techniques: BBN, DBN, FT, ET, Markov and Semi-Markov, FEM and FDM, FM, RBD.
- Sensor-Based (Precursors) / Big Data Reliability Analysis
 - Data Fusion, Machine Learning (GRP, SVM,..)
 - Signal Processing, Detection Probability
 - Representative Sample-Based Approach
 - Massively Parallel Processing (MPP)
- PHM of Cyber-Physical Complex Systems and Structures
- Science of Reliability Engineering

Soft Causal Relations Human, Organizational, and Regulatory Environment

Software Failure Modeling

Phenomenological and Logic Based Models

Risk Analysis

- 24
- Determine potential *undesirable* consequences associated with use of systems and processes
- Identify scenarios by which such consequences could materialize
- Estimate the *likelihood* (e.g., probability) of the scenarios
- Provide input to decision makers on optimal strategies to reduce the levels of risk

ELEMENTS OF RISK ANALYSIS

must be part of risk assessment

Applied to System Life Cycle

- Design
- Development
- Installation
- Operation
- Decommissioning

Probabilistic Risk Assessment in the Nuclear Power Industry

- 27
- □ 1975, Reactor Safety Study, WAHS-1400
 - Public health risk due to potential accidents in commercial nuclear power plants
 - First comprehensive, large scale probabilistic risk assessment (PRA) of a complex system

- Established the core techniques of engineering systems PRA
- 1980-1988: Numerous full scope PRAs of commercial nuclear power plants performed by the industry
- 1994-2000 PRA-based IPEs of all NPPs
- 1998: Risk-informed regulatory approach embraced by NRC
- Long Term Waste Disposal (e.g., Total System Performance Assessment for Yucca Mountain Site, DOE)

NIST IT Security Risk Management Framework

NASA Risk Management Perspective

NASA RM Process Terms (NPG8705.x, Dec. 2000) **IDENTIFY** D Identify risk issues and concerns **NASA Risk Element Terms** 0 С С 0 **AI Y7F** U **Mission Risk** Evaluate (impact/severity, probability, Μ time frame), classify, and prioritize risks Μ Μ Ε **PLAN** U **Technical Programmatic** Decide what, if anything, should be Ν Risk **Risk** Ν done about risks Т TRACK С Safetv Cost Monitor risk metrics and verify/validate mitigation actions Α Т Schedule CONTROL Performance Ε

Other

Other

Replan mitigations, close risks, invoke contingency plans, or track risks

Key Areas of Research: Risk Frontiers

- 30
- Infrastructure Safety-Security-Resilience (SSR)
 - Electronic Information Flow Embedded in Nearly Every Aspect of Modern Life
 - Integrity of Complex Systems and Networks: Cyber-Human-Software-
- Physical Systems
 - Highly Connected Infrastructure Networks: Electricity, Gas, and Water
- Pose Major Societal Risks Through Cyberspace Attacks
 - Risk Management and Resilience
 - Societal Disruption, Health, Safety and Resilience Goals

Key Areas of Research: Risk Frontiers-Cont.

- 31
 - Life-Cycle Risks of Advanced Energy Systems
 - Renewable Systems (Building, Environmental, Internal and External)
 - Nuclear Energy (Fission and Fusion)
 - Climate Change Risks of Disruptions in Sustained Energy Supply
 - Health System Risks
 - Simulation-Based Dynamic Probabilistic Risk Assessment
 - High Power Computing Leading to Less Inductive Risk Models
 - More Deductive Computer-Assisted Risk Scenario Generation

Aviation Accident Rates

33

1970-2005 Number of fatal accidents/ million departures

Calculated vs. Real: the case of CCF

Numbers Move Faster Than Reality

Time

RBD vs. DFR; Non-Repairable-Reliability Metrics

36

- Selection of a System Solely Based on its Reliability Can Be Miss-Leading,
 - Even If All Components In The System Are Characterized By Constant Failure Rates
 - > Are Arranged In Series.

 $\overline{L}_1 = f_{A1}C_{A1} + f_{B1}C_{B1} = 1 \times 2000 + 9 \times 100 = 2900$ $\overline{L}_2 = f_{A2}C_{A2} + f_{B2}C_{B2} = 3 \times 2000 + 2 \times 100 = 6200$

RBD and DFR; Differences-Availability

37

k = Operation Duration in Years

discount rate r = 7.5%, k1 = 25 and k2 = 2, yields

$$\frac{PV_2}{PV_1} = \frac{(1+r)^{k1}}{(1+r)^{k2}} \approx 5.28$$

OUR Proposal is Risk-Based Design for Reliability

Corporate better understands the values on the reliability improvement

Challenges

- Believability of results
 - Model vs. reality
 - Quality of analysis (Numbers that do not correlate with reality)
- Overly simplistic methods for complex problems
 - and the opposite...
- Legacy methods that have outlived their usefulness
 - FMEA unraveling complexity
 - Weibull answer to all questions
- Statistical angle of reliability

Prognostics and Health Monitoring Technologies

Enablers

- Rapid advancements in
 - Sensor technologies
 - Information processing capabilities
 - Data Fusion & Inference methods
 - PHM of Cyber-Physical Complex Systems and Structures

Challenges include

- Science Based or Empirical Degradation Models for Various Failure Mechanisms
 - Failure Mechanisms Interactions
- System-Level PHM
- X-ware Complexity Issues

Prognostics and Health Monitoring Technologies

Enablers

- Rapid advancements in
 - Sensor technologies
 - Information processing capabilities
 - Data Fusion & Inference methods

Challenges include

- Science Based or Empirical Degradation Models for Various Failure Mechanisms
 - Failure Mechanisms Interactions
- System-Level PHM
- X-ware Complexity Issues

Bayesian Network in SHM

42

Compact and seamless integration of the data model and System model

BBN Based Online Health Monitoring

Dynamic Health / Integrity Management System

Fatigue Damage Characterization Based of Thermodynamic Entropy

- Diminishing the strength until failure [J. Lemaitre and J. Dufailly, 1987]
- Engineering context:
 - External work
 - (mechanical, thermal,
 - electrical, chemical or their
 - combinations)

- gradual alteration of matter
- dissipation of energy.
- □ The definition of damage varies at different geometric scales:
 - Fatigue MechanismNanoscale:the configuration of the atomic bondsMicroscale:the accumulation of the slip bandsMesoscale:the growth and coalescence of microcracksMacroscale:the growth of macrocracksThe definition of damage is relative to a reference state:
 - The definition of damage is relative to a reference state:
 - Fatigue Mechanism reduction in the Young's modulus

load-carrying

capacity

crack length ...

Thermodynamically, all damage mechanisms share a common feature, which is dissipation of energy.
 Damage = Dissipation (entropy generation)

surroundings

system

d_e**S**: entropy exchange (flow) with the

d_i**S**: the entropy generation inside the

$$\frac{d_i S}{dt} = \dot{\gamma} = X_i J_i, \quad i = 1, 2, ..., n$$

X_i: Generalized thermodynamic forces
J_i: Thermodynamic fluxes
i: the number of different processes acting on the system.

Thermodynamic Damage

Advantages

- Commonly Mechanical Element of entropy generation dominate the total entropy generation.
- The entropy generation can be explicitly expressed in terms of physically measureable quantities.
- Thermodynamics allows for quantifying every dissipative process in the system that gives rise to the entropy generation, irrespective of the underlying degradation phenomena.
- For reliability study, entropy approach includes all degrading mechanisms when multiple competing and common cause failure mechanisms are involved,
 - a damage parameter for diagnosis and prognostics is more favorable in comparison with the PoF models

Fatigue Damage

18

$$\dot{\gamma} = \frac{1}{T} \left(\boldsymbol{\sigma} : \dot{\boldsymbol{\varepsilon}}_p - A_k \dot{V_k} - Y \dot{D} - \frac{\mathbf{q}}{T} \cdot \boldsymbol{\nabla} \mathbf{T} \right) \ge 0$$

- σ the stress
- **εp** the plastic strain rate
- **T** the temperature
- V_k internal variable
- $\mathbf{A}_{\mathbf{k}}$ the thermodynamic force associated with an internal variable
- **q** the heat flux
- Y the elastic energy release rate

D the damage

$\begin{array}{c} \sigma : \dot{\varepsilon}_{p} \\ d \\ A_{k}\dot{V}_{k} \\ \overbrace{\delta\varepsilon_{p}}{} & \delta\varepsilon_{e} \\ \end{array} \underbrace{E \\ E - \delta E \\ F - \delta E \\ F$

Heat Equation

$$\rho C\dot{T} - k \nabla^2 T = \dot{W_p}$$

ρ	density
С	the specific heat
k	the thermal conductivity
Wp	plastic work
Wp	plastic work

Resilience

- The resilience integrates robustness, resourcefulness and recovery for system adaptation with all undesired conditions.
 - Robustness: the ability of an system to withstand extreme weather events as well as gradual changes (e.g. sea level rise) and continue operating.
 - Resourcefulness: the ability to effectively manage operations during extreme weather events.
 - Recovery: the ability to restore operations to desired performance levels following a disruption.
 - Adaptation of an energy system to climate change refers to the process of adjustment of all components of the energy system to actual or expected climate and its effects.

Resilience-cont.

- The ultimate safeguard is to make systems resilient by design
- Resilient systems would have inherent abilities to
 - adapt to changing environment,
 - tolerate emergent failure mechanisms,
 - self-recover

Resilience Analysis

- There are several quantitative and qualitative approaches for the resilience analysis.
- The quantitative methods include probabilistic resilience analysis.
- S: system with *n* components,
- the probabilistic resilience res_{pr}(S; β): largest number of component failures
- such that **S** is still *up* with the probability 1 - β , that is

$$\operatorname{res}_{\operatorname{pr}}(\mathbf{S};\beta) = \max\{I: \sum_{i=1}^{I} P(S,i) \le \beta\}$$

Shape Memory Alloys (SMAs)

- Metals that "remember" their original shapes.
- Nickel-titanium alloys one of the most useful SMAs
 - Applications: military, medical, safety, and robotics
 - Surgical Tweezers
 - Orthodontic wires
 - Eyeglass frames
 - Guide for catheters

"Self-Healing Plastic"

Human Skin:

- Flexible
- Sensitive to stimuli: touch & pressure,
- Conducts electricity
- Survives wear & Tear: self-healing

 Composite material composed of an organic polymer with embedded nickel nanostructured microparticles, which shows mechanical and electrical self-healing properties at ambient conditions.

* Benjamin C-K. Tee, Chao Wang, Ranulfo Allen & Zhenan Bao Nature Nanotechnology 7, Published online 11 November 2012

Software Functionality

Easier to achieve

Functional Linkages are soft, can be rerouted or reconfigured

Fault Tolerance is well established

"Safe mode"

Most difficult

- Hard functional coupling (in contrast to software)
- Need New design paradigms
- Solution is closely tied to materials issues

Mechanical and Electrical Functionality

- Achievable first steps at system level
 - Design to migrate to different states for different environments
 - Multiple anticipated states
 - Detect and deflects (seen in some resilient networks)
 - Function in degraded state
 - "Safe mode" for essential function in response to unanticipated events
 - Sleep mode" while recovery is in progress
- □ 3-D printing of failed parts?

