
Trends and Prospective in Risk and 
Reliability Engineering Research

Mohammad Pourgol-Mohammad, Ph.D, PE
Senior Reliability Manager

Johnson Controls Inc.
York, PA

Associate Professor of Risk and Reliability
Sahand University of Technology

Tabriz-Iran

Invited Speech at
IEEE Reliability Section
MIT Lincoln Laboratory
Boston,  Dec. 13, 2017

1



 Engineered Systems

 Failure and Complexity

 Failure and Damages

 Frontiers in:

 Reliability Engineering

 Risk Analysis

 Prognosis and Health Management (PHM)

 Resilience
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Engineered Systems; Closer Look
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Generalized Concept of Risk Scenario
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Conceptual Probabilistic Model of System Evolution
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Anatomy of a Risk Scenario

Mission Time

Success of Mission

Risk Senario

 (e.g, loss of mission)

Risk Senario

( e.g., Abort)

Risk Senario

( e.g., Degraded Mission)

Perturbation

(Initiating Event)

Branch Point

(Pivotal Event)

End State

A path from the initiating event to an end state is called a scenario.
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Reliability Engineering

Life Cycle Risk Management

Prognostics Health Management

Evolution
of The 

Discipline
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Resilience

Complexity and Failures



Oil rig explosion in 2010,

Gulf of Mexico

Fatalities and contaminations

Unplanned shut-down, 

D.C. Cook NPP

Loss of revenues

Problem statement

Failures
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Prevented by

Design for Reliability Maintenance

Time

Normal Degraded Failure

Problem statement

Failures

…
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Relevance of the Problem

 According to Network Rail (UK), rail
infrastructure failures and defects are
responsible for 14 million minutes of
delay per year

 Delays in civilian aircraft industry cost 22
billion US $ in 2011

 Nuclear industry (France)

Maintenance 

(about 1.5 billions euros/year)
Fuel

Financial 

costs

1/3

1/3

Operation

1/6
1/6
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Where Do Failures Originate

Mature Nuclear Power Production Failures

 People                                                      38%

 Procedures + Processes                             34%

 Equipment                                                28%
10 Year ASME Boiler Test Code Equipment*

 23,338 Accidents                    83% human oversight or lack of knowledge

 720 injuries                            69% human oversight or lack of knowledge

 127 deaths                             60% human oversight or lack of knowledge

Engineers--can you really reduce 
problems working only on the 
hardware?

* Source: ASME National Board Bulletin, Summer 2002, Volume 57, Number 2, Page 10,

“Ten Years Of Incident Reports Underscore Human Errors As Primary Cause

Of Accidents”, http://nationalboard.org/SiteDocuments/Bulletins/SU02.pdf

72% of all failures
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Reliability Engineering

Life Cycle Risk Management

Prognostics Health Management

Evolution
of The 

Discipline
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Resilience Engineering

Complexity and failures



Reliability Engineering

▪ Determine why and how systems and 

processes fail 

▪ Measure, track, and predict levels of reliability 

in various phases of system/process life cycle  

▪ Improve system/process reliability by 

removing failure causes 

▪ Provide input to decision makers on how to 

achieve the above objectives in an optimal 

way   
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Methods of Reliability Engineering 

 Understanding why and how things fail 

 “science of failure”

 Materials, Physics of Failure, Human Behavior

 Life Prediction - Statistical and Probabilistic Methods  

 System Logic Modeling and Failure Path Identification

 Fault Tree, Reliability Block Diagram,

 Event Sequence Diagrams

 Probabilistic Physics of Failure

 System/Process Multi-scale Probabilistic Simulation
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Methods for Reliability Improvement

 Design for Reliability 

 Failure Mechanism Prevention

 Redundancy and Functional Diversity

 Fault Tolerance

 Reliability Growth 

 Preventive Maintenance/RCM

 Health Monitoring  
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 Issues with the Traditional Field / Test Data

–“One Size Fits All” concept! E.g., Constant Failure Rate

– Reliability Estimates Rarely Match Reality

 Probabilistic Physics-of-Failure (PPoF)

– More than 50-Years of History in PoF (More Recently PPoF)

– Accelerated Reliability Testing for PPoF Model Development

– Empirical Model for Unit-Specific Models of Reliability 
Assessment

– Simulation-Based Reliability Assessment / Numerical 
Complexity

Key Areas of Research: Reliability



 Hybrid Reliability

– Combined System Analysis Techniques: BBN, DBN, FT, ET, 
Markov and Semi-Markov, FEM and FDM, FM, RBD.

 Sensor-Based (Precursors) / Big Data Reliability 
Analysis
– Data Fusion, Machine Learning (GRP, SVM,..)

– Signal Processing, Detection Probability

– Representative Sample-Based Approach

– Massively Parallel Processing (MPP)

 PHM of Cyber-Physical Complex Systems and 
Structures

 Science of Reliability Engineering

Key Areas of Research: Reliability



Soft Causal Relations
Human, Organizational, and Regulatory Environment
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Software Failure Modeling

Functional 

Decomposition 



Phenomenological and Logic Based Models

Fault Trees
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Complexity and failures

Reliability Engineering

Prognostics Health Management

Evolution
of The 

Thinking
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Resilience Engineering 

Life Cycle Risk Management



Risk Analysis 

 Determine potential undesirable 

consequences associated with use of 

systems and processes

 Identify scenarios by which such 

consequences could materialize 

 Estimate the likelihood (e.g., probability) of 

the scenarios

 Provide input to decision makers on optimal 

strategies to reduce the levels of risk     
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Risk
Communication

Risk
Management

Risk
Assessment

Influence

Serve

ELEMENTS OF RISK ANALYSIS

Decision maker whether risk manager or communicator 

must be part of risk assessment
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Applied to System Life Cycle

 Design

 Development 

 Installation

 Operation 

 Decommissioning  
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Probabilistic Risk Assessment in the 
Nuclear Power Industry

 1975, Reactor Safety Study, WAHS-1400 
 Public health risk due to potential accidents 

in commercial nuclear power plants 

 First comprehensive, large scale probabilistic

risk assessment  (PRA) of  a complex system

 Established the core techniques of engineering systems PRA

 1980-1988: Numerous full scope PRAs of commercial 
nuclear power plants performed by the industry

 1994-2000 PRA-based IPEs of all NPPs 

 1998: Risk-informed regulatory approach embraced 
by NRC  

 Long Term Waste Disposal  (e.g., Total System 
Performance Assessment for Yucca Mountain Site, 
DOE ) 
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NIST IT Security Risk Management Framework

Boundaries/Scope
   
System Bondary
Analysis Boundary

Analysis
   
Asset Valuation
Threats
Safeguards
Impacts
Vulnerabilities
Likelihood

Uncertainty

Risk Management

Acceptance
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  Requirements
  System
  Environment

Measure of 
Risk

Risk Assessment
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NASA Risk Management Perspective
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 Infrastructure Safety-Security-Resilience (SSR)

– Electronic Information Flow Embedded in Nearly Every Aspect 
of Modern Life

– Integrity of Complex Systems and Networks: Cyber-Human-
Software-

 Physical Systems

– Highly Connected Infrastructure Networks: Electricity, Gas, and 
Water

 Pose Major Societal Risks Through Cyberspace Attacks

– Risk Management and Resilience

– Societal Disruption, Health, Safety and Resilience Goals

Key Areas of Research: Risk Frontiers
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 Life-Cycle Risks of Advanced Energy Systems

– Renewable Systems (Building, Environmental, Internal and 
External)

– Nuclear Energy (Fission and Fusion)

– Climate Change Risks of Disruptions in Sustained Energy Supply

 Health System Risks

 Simulation-Based Dynamic Probabilistic Risk 
Assessment

– High Power Computing Leading to Less Inductive Risk Models

– More Deductive Computer-Assisted Risk Scenario Generation

Key Areas of Research:
Risk Frontiers-Cont.
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Understanding the Limitations32



Aviation Accident Rates
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35 years of technology 

improvements , only a factor 

of  10  decrease in risk
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Calculated vs. Real: the case of CCF

A B C

A
B1

C
B2

QS = QA + QB + QC

QS = QA + (QB)2 + QC

QS = QA + [(1-β)(QB)]2 + β QB+ QC
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Numbers Move Faster Than Reality

Time

Rel. 0.90

0.99
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RBD vs. DFR; Non-Repairable-Reliability Metrics

➢ Selection of a System Solely Based on its Reliability Can 
Be Miss-Leading, 

➢ Even If All Components In The System Are Characterized By 
Constant Failure Rates 

➢ Are Arranged In Series.
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➢ OUR Proposal is Risk-Based Design for Reliability

➢ Corporate better understands the values on the reliability improvement  



Challenges

▪ Believability of results 

▪ Model vs. reality 

▪ Quality of analysis (Numbers that do not correlate with 
reality)

▪ Overly simplistic methods for complex problems

▪ and the opposite…

▪ Legacy methods that have outlived their 
usefulness

 FMEA – unraveling complexity

 Weibull – answer to all questions

 Statistical angle of reliability
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Prognostics Health Management

Failures and Complexity

Reliability Engineering

Life Cycle Risk Management

Evolution
of The 

Thinking
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Resilience Engineering
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Prognostics and Health Monitoring Technologies

 Enablers 
 Rapid advancements in 

 Sensor technologies 

 Information processing capabilities 

 Data Fusion & Inference methods

 PHM of Cyber-Physical Complex Systems and Structures

 Challenges include 
 Science Based or Empirical Degradation Models for 

Various Failure Mechanisms 

 Failure Mechanisms Interactions

 System-Level PHM   

 X-ware Complexity Issues 
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Prognostics and Health Monitoring Technologies

 Enablers 

 Rapid advancements in 

 Sensor technologies 

 Information processing capabilities 

 Data Fusion & Inference methods  

 Challenges include 

 Science Based or Empirical Degradation Models for 
Various Failure Mechanisms 

 Failure Mechanisms Interactions

 System-Level PHM   

 X-ware Complexity Issues 
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 Compact and seamless integration of the 
data model and System model

System ModelData Model

f (t)

Bayesian Network in SHM
42



BBN Based Online Health Monitoring

% of gas in oil
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Dynamic Bayesian Network
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0 1
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Dynamic Health / Integrity Management System

Sand Monitoring

Leakage Internal Corrosion

External Corrosion
Acoustic Signal

Pressure

Temperature

Soil Resitivity

Ambient Temperature

Hydrogen 

Sulfide 

Concentration
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Fatigue Damage Characterization Based of 

Thermodynamic Entropy 

 Diminishing the strength until failure [J. Lemaitre and J. Dufailly, 1987]

 Engineering context:

 The definition of damage varies at different geometric scales:

Fatigue Mechanism

■ The definition of damage is relative to a reference state:

Fatigue Mechanism reduction in the Young’s modulus

load-carrying 
capacity

crack length …

External work

(mechanical, thermal, 

electrical, chemical or their 

combinations)

• gradual alteration of matter

• dissipation of energy.

Nanoscale: the configuration of the atomic bonds

Microscale: the accumulation of the slip bands

Mesoscale: the growth and coalescence of microcracks

Macroscale: the growth of macrocracks

45
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Thermodynamic Damage

 Thermodynamically, all damage mechanisms share a 

common feature, which is dissipation of energy.

Damage ≡ Dissipation (entropy generation)

deS: entropy exchange (flow) with the 

surroundings 

diS: the entropy generation inside the 

system

Xi: Generalized thermodynamic forces

Ji: Thermodynamic fluxes

i: the number of different processes acting on the system.

, 1, 2,...,i
i i

d S
X J i n

dt
  
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Thermodynamic Damage

 Advantages

 Commonly Mechanical Element of entropy generation dominate the

total entropy generation.

 The entropy generation can be explicitly expressed in terms of

physically measureable quantities.

 Thermodynamics allows for quantifying every dissipative process in

the system that gives rise to the entropy generation, irrespective of the

underlying degradation phenomena.

 For reliability study, entropy approach includes all degrading

mechanisms when multiple competing and common cause failure

mechanisms are involved,

 a damage parameter for diagnosis and prognostics is more favorable in

comparison with the PoF models

47
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Fatigue Damage

σ the stress

εp the plastic strain rate

T the temperature

Vk internal variable

Ak the thermodynamic force associated 

with an internal variable

q the heat flux

Y the elastic energy release rate

D the damage

 Heat Equation

1
: . 0p k kA V Y D

T T


 
     

 

q
σ ε 

2

pCT k T W   

ρ density

C the specific heat

k the thermal conductivity

Wp plastic work
48
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Resilience Engineering

Failures and Complexity

Reliability Engineering

Life Cycle Risk Management

Evolution
of The 

Thinking
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Prognostics Health Management
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Resilience 

 The resilience integrates robustness, resourcefulness 
and recovery for system adaptation with all undesired 
conditions.

 Robustness: the ability of an system to withstand extreme 
weather events as well as gradual changes (e.g. sea level rise) 
and continue operating.

 Resourcefulness: the ability to effectively manage operations 
during extreme weather events.

 Recovery: the ability to restore operations to desired 
performance levels following a disruption.

 Adaptation of an energy system to climate change refers to 
the process of adjustment of all components of the energy 
system to actual or expected climate and its effects.


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Resilience-cont. 

 The ultimate safeguard is to make 
systems resilient by design

 Resilient systems would have inherent 
abilities to

 adapt to changing environment, 

 tolerate emergent failure mechanisms,

 self-recover
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Resilience Analysis



▪ There are several quantitative and qualitative approaches for 

the resilience analysis. 

▪ The quantitative methods include probabilistic resilience 

analysis.

▪ S: system with n components, 

▪ the probabilistic resilience respr(S; β): largest number of 

component failures 

▪ such that S is still up with the probability 1 -β, that is

 




I

i

iSPI
1

pr }),(:max{) (S;res 
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Materials

Mechanical and Electrical Function Delivery

Sensing, Monitoring, and Control

53

Software

Human (operators, maintainers, users, decision-makers)

Pathway to
Resilience 
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Shape Memory Alloys  (SMAs)

• Metals that "remember" their original shapes.

• Nickel-titanium alloys one of the most useful 
SMAs

o Applications: military, medical, safety, and robotics

✓ Surgical Tweezers

✓ Orthodontic wires

✓ Eyeglass frames

✓ Guide for catheters
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“Self-Healing Plastic”

 Human Skin:

 Flexible

 Sensitive to stimuli: touch & pressure, 

 Conducts electricity

 Survives wear & Tear: self-healing

 Composite material composed of an organic polymer with 
embedded nickel nanostructured microparticles, which shows 
mechanical and electrical self-healing properties at ambient 
conditions.

* Benjamin C-K. Tee, Chao Wang, Ranulfo Allen & Zhenan Bao Nature Nanotechnology 7, Published online 11 
November 2012
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Software Functionality  

 Easier to achieve  

Functional Linkages are soft, can be 
rerouted or reconfigured

 Fault Tolerance is well established 

 “Safe mode”
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Mechanical and Electrical Functionality 

 Most difficult 

Hard functional coupling (in contrast to 
software) 

Need New design paradigms

Solution is closely tied to materials 
issues   
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Mechanical and Electrical Functionality 

 Achievable first steps at system level

 Design to migrate to different states for different 
environments

 Multiple anticipated states

 Detect and deflects (seen in some resilient networks) 

 Function in degraded state

 “Safe mode” for essential function in response to 
unanticipated events  

 “Sleep mode” while recovery is in progress

 3-D printing of failed parts? 
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