Photonic Magnetometry at a (Short) Distance

Chris Sataline IEEE Reliability Boston Section 13 February, 2013 INCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This work is sponsored by the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Acknowledgements

- Lincoln Scholars Program
- Jon Ashcom
- James Breen
- Mike Grzesik
- Kevin Holman
- Sumanth Kaushik
- Madhavi Seetamraju
- Chris Semisch
- Prof. Sergienko
- Eric Statz
- Matt Stowe

- 1859: Geomagnetic storm takes down telegraph system
- 1972: Lethal doses of energetic particles detected
- 1989: Hydro-Quebec transformer damage takes down Quebec power grid for nine hours (cost: \$10M)
- 1997: Coronal mass ejection permanently damages AT&T satellite with estimated cost of \$200M

Space weather can damage technology

RSAM- 4 CSat 2/13/13

CSat 2/13/13

X: Satellite magnetometers

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Satellite Death

- Atmospheric drag
- Single event upset
- Differential charging
- Bulk charging

Earth

Coronal Mass Ejection (CME)

Χ

RSAM- 7 CSat 2/13/13

Space Weather Measurements: 1989 geomagnetic storm

Space Weather Science

Understanding space weather critical to satellite performance & survival

System Concept

Satellite electromagnetic systems contaminate magnetic field measurement

System Concept

Satellite electromagnetic systems contaminate magnetic field measurement

Eliminate isolating boom. Interrogate passive magnetic sensor by laser.

RSAM- 11 CSat 2/13/13 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Outline

- Introduction
- Background Material
- Experimental
- Results
- Summary

Magnetic Yardstick

Magnetometers:

CSat 2/13/13

Crash Course in Quantum Optics

("Semester in a slide")

Von Neumann/Liouville Equation

$$i\hbar\dot{\rho} = [H,\rho]$$

$$H = H_{atom} + H_{laser}$$

 $\rho =$ probability density matrix

Atomic populations evolve according to Hamiltonian

E

Coherent Population Trapping (CPT)

- Laser lines resonant with two atomic transitions
 - Rabi oscillation
 - Electrons pumped into dark state
 - Dark state: not resonant with either lase field
 - Decrease in atomic absorption
- Sweep λ_2 (sideband) through resonance
 - Absorption varies versus RF sideband frequency
 - FM laser spectroscopy

Coherent population trapping produces narrow optical (two-photon) resonances

Rubidium-87 Atomic Transitions

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RSAM- 16 CSat 2/13/13

- Hyperfine levels contain 2F+1 magnetic sublevels
- Zeeman sublevels shift in external magnetic field

CPT Magnetometry

Change in magnetic field causes coherent population trapping dark state at different sideband separation

Outline

- Introduction
- Background Material
- Experimental
- Results
- Summary

Transmit and Receive Optical System

System Block Diagram

RF Sideband Modulation

Basic CPT Data

Narrow linewidths enable small frequency shift measurement

Magnetic Environment

Magnetic Field Control

µ-Metal

- High magnetic susceptibility alloy shields contents from external magnetic fields
- Used only for system characterization

Helmholtz Coils

- Current through symmetric coils forms uniform field in center
- 3-axis control
- Used for producing artificial magnetic fields

Outline

- Introduction
- Background Material
- Experimental
- Results
- Summary

No Magnetic Field

Magnetic Field

Magnetic field causes measureable Zeeman shift

Polarization Effects

Dipole matrix elements squared: 1/2, 1/4, 1/12

RSAM- 30 CSat 2/13/13

Transit-Time Broadening

Measurement time limited by atoms' path through laser

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Field Determination

1-meter Magnetometry

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Outline

- Introduction
- Background Material
- Experimental
- Results
- Summary

- CPT magnetometry testbed established
- Sensitivity matches theory (unbuffered vapor, 30 kHz)
- 1 meter standoff measurements
- Zeeman shift tracks prediction (7 kHz/µT)

Future Work

- Peak finding algorithm
 - Sensitivity better than quoted
- Buffer gas improvements
 - Helium at ~10 torr
 - Better sensitivity
- VCSEL
 - Direct current injection modulation up to 10 GHz
 - Control over sideband conversion efficiency
- Gradiometry
 - Removes common mode noise
 - CCD imaging capability
- Time-varying fields

Questions

Backup Slides

Atomic Structure

- Fine structure
 - Relativistic corrections
 - Spin-orbit coupling
 - J = L + S
- Hyperfine structure
 - Electron spin/nuclear spin coupling
 - F = J + I

Rubidium-87 (alkali metal)

Atomic number 37, nuclear spin I = 3/2

e⁻ configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 5s¹

Valence e⁻ ground state: 5s ("s" \rightarrow L=0)

Fine structure ground state: $J = 0 + \frac{1}{2} \rightarrow 5S_{1/2}$

Hyperfine ground state: $F = \{3/2 + \frac{1}{2}, 3/2 - \frac{1}{2}\} = \{2, 1\}$

Electron Cloud Distributions

Lightweight 8 meter boom (w/o design): \$178,500