Recent Progress in Understanding the Electrical Reliability of GaN High-Electron Mobility Transistors

J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology

IEEE Boston Reliability Chapter Meeting

MIT Lincoln Laboratory, Feb. 17, 2015

Acknowledgements:

F. Gao, J. Jimenez, D. Jin, J. Joh, T. Palacios, C. V. Thompson, Y. Wu ARL (DARPA-WBGS program), NRO, ONR (DRIFT-MURI program),

Outline

- 1. Motivation
- 2. Electrical and structural degradation of GaN HEMTs
- 3. Hypotheses for GaN HEMT degradation mechanisms
- 4. Paths for mitigation of GaN HEMT degradation

Breakthrough RF-µw-mmw power in GaN HEMTs

O PAE

Pin (dBm)

Year

P_{out}>40 W/mm, over 10X GaAs! Wu, DRC 2006

GaN HEMTs in the field

Counter-IED Systems (CREW)

200 W GaN HEMT for cellular base station Kawano, APMC 2005

100 mm GaN-on-SiC volume manufacturing Palmour, MTT-S 2010

GaN HEMT: Electrical reliability concerns

Critical voltage for degradation in DC step-stress experiments

 I_D , R_D , and I_G start to degrade beyond *critical voltage* (V_{crit}) + increased trapping behavior – current collapse

Critical voltage: a universal phenomenon

Meneghini, IEDM 2011

Ivo, MR 2011

GaN HEMT on Si

GaN HEMT on Si

GaN HEMT on sapphire

Ma, Chin Phys B 2011

Marcon, IEDM 2010 Demin

Demirtas, ROCS 2009

Structural degradation: cross section

8

Correlation between pit geometry and I_{Dmax} degradation

Pit depth and I_{Dmax} degradation correlate:
 → both permanent degradation and current collapse (CC)

Structural damage at gate edge: a universal phenomenon

Barnes, CS-MANTECH 2012

Dammann, IIRW 2011

Marcon, MR 2010

0 <u>10 nm</u> Cullen, TDMR 2013

(b)

Ni

AlGaN

GaN

Chang, TDMR 2011

Structural degradation: planar view

OFF-state step-stress, V_{GS}=-7 V, T_{base}=150 °C

Makaram, APL 2010

- Continuous groove appears for V_{stress} < V_{crit}
- Deep pits formed along groove for V_{stress}>V_{crit}

Correlation between pit geometry and I_{Dmax} degradation

I_{Dmax} degradation and pit cross-sectional area correlate

Planar degradation: the role of time

- Very fast groove formation (within 10 s)
- Delayed pit formation
- Pit density/size increase with time
- Good correlation between I_{Dmax} degradation and pit area

Structural damage at gate edge: a universal phenomenon

Barnes, CS-MANTECH 2012

Monte Bajo, APL 2014

Whiting, MR 2012

Holzworth, ECST 2014

Brunel, MR 2013

Time evolution of degradation for constant V_{stress} > V_{crit}

I_{Goff} and V_T degradation:

- fast (<10 ms)
- saturate after 10⁴ s

CC degradation:

- slower
- hint of saturation for long time

Permanent I_{Dmax} degradation:

- much slower
- does not saturate with time

Joh, IRPS 2011

The role of temperature in time evolution

Temperature acceleration of incubation time

- Different E_a for I_{Goff} , CC, I_{Dmax} reveal different degradation physics
- E_a for permanent I_{Dmax} degradation similar to life test data*
- * Saunier, DRC 2007; Meneghesso, IJMWT 2010

DC semi-ON stress experiments

Structural vs. electrical degradation

Trench/pit depth and width correlate with I_{Dmax} degradation

Wu, JAP 2015

Thermally activated degradation

Pit/trench depth increase towards center of gate finger

→ self heating + thermally activated process

• Permanent I_{Dmax} degradation is thermally activated with $E_a \sim 1.0 \text{ eV}$

Sequential I_G and I_D degradation

"Universal degradation" pattern:

- I_G degradation takes places first without I_D degradation
- I_D degradation takes place next without further I_G degradation

RF power degradation

AFM

	HV OFF-state DC	RF power
l _{Dmax}	\downarrow beyond V _{crit}	\downarrow beyond P _{in-crit}
R _D	\uparrow beyond V _{crit}	\uparrow beyond P _{in-crit}
R _s	small increase	small increase
I _{Goff}	\uparrow beyond V _{crit}	↑ beyond P _{in-crit}
Current Collapse	\uparrow beyond V _{crit}	\uparrow beyond P _{in-crit}
Permanent I _{Dmax}	\downarrow beyond V _{crit}	\downarrow beyond P _{in-crit}
Pits under drain end of gate	Yes	Yes
Pits under source end of gate	No	No

SEM

- RF power degradation pattern matches that of OFF-state DC stress
- But not always...

Joh, IEDM 2010 Joh, ROCS 2011 Joh, MR 2012

Summary of electrical and structural degradation

1. I_G degradation

- Fast
- Electric-field driven
- Little temperature sensitivity (E_a~0.2 eV)
- Tends to saturate

Correlates with appearance of shallow groove and small pits

- On S and D side (bigger on D side)
- Groove/small pits appear for V_{stress} < V_{crit}

Summary of electrical and structural degradation

2. Current-collapse degradation (trapping)

- Slower
- Enhanced by temperature, electric field
- Tends to saturate for very long times

Correlates with *pit growth*:

- Pits randomly located on drain side
- Pits grow with V_{stress}, time and temperature
- Pits eventually merge

Dominant trap created by stress already present in virgin sample, $E_a=0.56 \text{ eV}$

Joh, IRPS 2011

Summary of electrical and structural degradation

3. I_{Dmax}, R_D degradation

- Much slower
- Temperature activated (E_a~1 eV)
- Electric-field driven
- Does not saturate

Correlates with geometry of *pits* and *trench*

- Pits grow larger and merge into trench
- Trench grows deeper

Initial hypothesis: Inverse Piezoelectric Effect Mechanism

Strong piezoelectricity in AlGaN $\rightarrow |V_{DG}| \uparrow \rightarrow \text{tensile stress} \uparrow$ $\rightarrow \text{crystallographic defects beyond}$ *critical elastic energy*

G **Defects:** AlGaN **Trap electrons** ΔΦ_{bi} \rightarrow n_s $\downarrow \rightarrow$ R_D \uparrow , I_D \downarrow 2DEG Strain relaxation GaN \rightarrow I D \downarrow E_c defect Joh, IEDM 2006 Provide paths for I_G state Joh, IEDM 2007 $\rightarrow I_{G} \uparrow$ EF Joh, MR 2010b AlGaN GaN

Model for critical voltage

V_{GS}=-5 V, V_{DS}=33 V 16nm 28% AlGaN

Joh, MR 2010

Predictions of Inverse Piezoelectric Effect model borne out by experiments

To enhance GaN HEMT reliability:

- Reduce AIN composition of AIGaN barrier (Jimenez, ESREF 2011)
- Thin down AlGaN barrier (Lee, EL 2005)
- Use thicker GaN cap (Ivo, IRPS 2009; Jimenez, ESREF 2011)
- Use InAIN barrier (Jimenez, ESREF 2011)
- Use AlGaN buffer (Joh, IEDM 2006; Ivo, MR 2011)
- Electric field management at drain end of gate (many)

Can't explain:

- Groove formation/I_G degradation below critical voltage
- Presence of oxygen in groove/pit
- Role of atmosphere during stress
- Role of surface chemistry

I_G degradation for V_{stress} < V_{crit}

Meneghini, IEDM 2011

- Sudden irreversible increase in I_G
- Enhanced by V_{stress}
- Preceded by onset of I_G noise
- Weakly temperature enhanced (E_a=0.12 eV)

^{-4.0} Stress at V_=-30 V, V_=V_=0 -3.5 Gate current Gate Current (µA) -3.0 becomes noisy Permanent before degradation: degradation -2.5 rapid increase in gate current -2.0 -1.5 -1.0 3600 100 1000 10 Stress Time (h)

I_G degradation correlates with electroluminescence hot spots

Zanoni, EDL 2009 Meneghini, IEDM 2011

- Gate current electrons produce EL in GaN substrate
- EL spots tend to merge into a continuous line

EL hot spots correlate with pits, pits are conducting

EL picture S (a) 20 µm G D 3.0 nm 23.2 nm (b)S (C)S 15.0 1.0 IG 10.0 -0.05.0 -0.0-1.0-5.0-2.0-10.0-3.02 µm 2 µm D -37 -16.6

AFM topography

Montes Bajo, APL 2012

Normal AFM

Conducting AFM

Shallow pits and groove responsible for I_G degradation

Pits/Groove increase mechanical stress

Pit/groove increases mechanical stress due to inverse piezoelectric effect at drain end of gate

- 2 nm x 3 nm groove increases
 mechanical stress in AlGaN
 from 4.6 GPa to 13 GPa
- Groove has little effect in current underneath
- Pit formation brings major loss of current

Ancona, JAP 2012

Oxygen inside pit

- O, Si, C found inside pit
- Anodization mechanism for pit formation? (Smith, ECST 2009)
- Electrical stress experiments under N₂ inconclusive

Role of atmosphere on structural degradation

Off-state stress: V_{ds} =43 V, V_{gs} =-7 V for 3000 s in dark at RT

Surface pitting significantly reduced in vacuum

Impact of Moisture on Surface Pitting

Off-state stress: $V_{ds} = 43 \text{ V}, V_{gs} = -7 \text{ V}$ for 3000 s in dark at RT

> Stressed in watersaturated gas (Ar) $\Delta I_D = 28.8\%$

> > Stressed in dry gas (Ar) $\Delta I_D = 0.3\%$

Gao, TED 2014

- Moisture enhances surface pitting
- Results reproduced with dry/wet O₂, N₂, CO₂ and air

New hypothesis: AlGaN corrosion at edge of gate

Electrochemical cell formed at drain edge of gate

• Reduction of water:

 $2H_2O + 2e^- \leftrightarrow 2OH^- + H_2$

• Anodic oxidation of AlGaN: $2AI_xGa_{1-x}N + 6h^+ \leftrightarrow 2xAI^{3+} + 2(1-x)Ga^{3+} + N_2$ $2xAI^{3+} + 2(1-x)Ga^{3+} + 6OH^- \leftrightarrow xAI_2O_3 + (1-x)Ga_2O_3 + 3H_2O$

Source of holes: trap-assisted tunneling

High electric field under gate edge
→ trap-assisted BTBT electron tunneling
→ hole generation at AlGaN surface

Source of water: diffusion through SiN

 Water-vapor transmission rate (WVTR) through 100 nm of PECVD SiN:

0.01~0.1 g/m²/day

 Gao's estimate of necessary WVTR to cause pits: 0.05~0.1 g/m²/day

Tentative new model for GaN HEMT electrical degradation

- Step 1: formation of shallow pits/continuous groove in cap
- Pits/groove conducting: $I_{G}\uparrow$

Step 2: growth of pits through anodic oxidation of AIGaN

- I_{Dmax} as electron concentration under gate edge reduced
- CC↑ due to new traps

Exponential dependence of tunneling current on electric field

→ "critical voltage" behavior

Paths for mitigation

- 1. Reduce hole production
 - Mitigate electric field at gate edge:
 - gate edge design
 - field plate design
 - Mitigate traps in AlGaN:
 - optimize growth conditions
 - reduce AIN composition
 - thin down AlGaN
 - mitigate mechanical stress

2. Reduce water around gate edge

- 1. Reduce SiN permeability
- 2. Mitigate trapped moisture during process
- 3. Hermetic package

Many questions...

• I_G degradation:

- Detailed physics of onset of pits/groove? Also of electrochemical nature?
- Why weak temperature activation?
- Why does I_G degradation saturate?
- Detailed mechanism for electrical conduction of pits?

• Trap formation:

 Why traps introduced during degradation have similar dynamic signature as virgin traps?

Mechanical stress:

- Does mechanical stress and inverse piezoelectric effect still play role in degradation?
- Large variability in reliability:
 - Why? Also need effective screening process for virgin devices
- High-power RF stress
 - Is there a pulsed stress mode that faithfully emulates high-power RF stress?