

IEEE Joint Section Reliability Chapter

Dramatic COTs Pro-Active
Design Dfx traced to
Innovative PDCA Practice

Darryl J. McKenney Gene Bridgers 6/15/2011

Mercury Design for Reliability Agenda (Dfx)

- Introduction to Design for Reliability (Dfx)
- Mercury Dfx PDCA Automation Timing
- Our COTs Electrical Design Steps
- Examples of Actual DfR Alerts
- Examples of Actual Dfx Failures
- Key Performance Metrics
- The Customer MTBF View
- Impacts of Dfx
- PDCA Dfx Future Opportunities
- Questions

Mercury Introduction to Dfx

- This presentation describes Mercury's Dfx process:
 - Innovation
 - Practice
 - Success
- Mercury's innovative DfR process was initiated in late 2005.
- Automated DfR starts very early in the design cycle The DNA of our Module or System is based on selection of the electrical parts.
- It automatically contains MTBF predictions:
 - Telcordia SR 332-1
 - MIL-Handbook-217F-1
- Includes closed loop lessons learned for avoidance and a positive feedback for the preferred decisions on part standardization.
- DfR Practice is documented and audited as an ISO policy.
- Management tracks metrics each month and quarter to identify trends.

Mercury Introduction to Dfx

- Proactive DfR drives COTs designs:
 - Increases design accuracy
 - Increases design reuse
 - Reduces design cycle-time
 - Minimizes cost
- Electrical design staff has embraced our Dfx guidance.
- Design improvements are endorsed by NPI in Operations.
- This presentation includes:
 - Dfx alerts describing lessons learned
 - Positive Dfx initiatives
 - Key Dfx performance metrics

Mercury Dfx PDCA Automation Timing

PDCA stairs to reliability improvements

Mercury Dfx Automation Data Fields

- 1. Base failure rate (in FITs) for Telcordia SR-332 (1) assuming:
 - Air is $+40^{\circ}$ C
 - Electrical stress is 50%
 - Quality Multiplier is 1.0
- 2. Source of failure rate in item 1.
- 3. Base failure rate (in FPMH) for Mil-Hdbk-217F1 for Ground Benign (GB) assuming:
 - Air is $+30^{\circ}$ C
 - Electrical stress is 50%
 - Quality Multiplier is 1.0
- 4. Assigned DfR Alert #.
- 5. Assigned DfR Comments.
- 6. Mil-Handbook-217F1 Complexity.
- 7. MIL-Handbook-217F1 Part Family.
- 8. Reality MTBF value (Gene Bridgers) is in process.

Mercury COTS Electrical Design Steps

ldeas	
Nev	w Projects In The Pipeline Being Considered
	Authorize new design project
	Define specifications, schedule, budget
	Assign electrical design staffing using Schematic tools
	When design is mature using schematic tools, start layout
	Design Freeze for Prototypes
	CM reviews and DfM Comments
	Protype Build and Test
	DVT and HALT
	Design Approval for Production
A:	DfR Library is prepared and available at Every Design seat
	B: DfR is visable as Designer selects parts
	C: DfR/BOM is automatically mailed to Reliability Engineer as layout starts
	D: DfR updates occur when schematic is changed.
	E: Design Freeze for prototypes
	F: CM review and DfM comments

PCB Artwork Design Generation Flow Chart

PCB Artwork Generation Work Instructions

Uncontrolled document unless viewed online via the PCB/CAD web page: http://hwc.mc.com/PCB_CAD_DESIGN/

© 2011 Mercury Computer Systems, Inc.

PCB Artwork Design Generation Flow Chart

Mercury Examples of Dfx Alerts

- Solid tantalum capacitor
- Fragile ceramic chip (case 1210 +)
- Weak X5R ceramic chip part
- Thin gold plating (<30 micro-inches) on mating area of connector pins
- TSOP66 IC Case solder joints fails at cold
- $1M\Omega$ is humidity performance risk
- Purchasing restriction
- Risky short life Electrolytic life
- Risky ESD Margin
- Risky moisture rating
- Fragile PWB
- Fragile solder
- Fragile attachment

Mercury Positive Dfx Alerts

- Parts designated as "Common" increase standardization.
- Parts from "Preferred" suppliers who have an excellent qualification process.
- Cost swapping "opportunities" as things change in supply chain.

Dfx Thermal Component Assembly Issue – Z-Axis

Dfx Thermal Component Assembled Correctly

Dfx Component Tin Whisker Reliability Alert

Dfx Component Tin Whisker Reliability Alert

Dfx Component Tin Whisker Reliability Alert

© 2011 Mercury Computer Systems, Inc.

Mercury Key Dfx Performance Metrics

- Dfx is embraced and institutionalized by Electrical, Mechanical, CAD, Reliability, Manufacturing, and Management.
- In 2010:
 - Performed more than 1,150 automated DfR evaluations
 - Identified 11,888 DfR Alerts
- Dfx typically completes within 24 hours.
- Process and Metrics are fully documented with backup.
- Monthly metrics are published and stored in our vault.
- Internal and external customers compliment the MTBF Reports.
- Quality (RMA input) is driven back into the Component library and Dfx alerts.

Mercury Customer MTBF Prediction View

- An automated MTBF Report is generated for each released product.
 The report includes:
 - Predicted SR-332 MTBF
 - Predicted MIL-Handbook-217F1 MTBF
 - Explanation of field MTBF Realism
 - Graphical MTBF expectation for all thermal situations and all MIL-Handbook-217F1 Environments (displayed on the next slide)
- MTBF variations are derived from QuART PRO available from Quanterion.com.

Mercury Sample Graphical MTBF Variation

Mercury Initiating the DfR Process

Email notification showing that DfR work is ready for processing.

```
561114 / 3U-vpx-huron-river-xmc_r1 / Wed Jan 19 10:50:46 EST 2011
Note: 75 new components

The following DfR BOMs are available:

420-1114-01 = http://hwc.mc.com/vault/ViewDraw/Projects/3U-vpx-huron-river-xmc r1/420-1114-01 DFR.xls
```


Mercury Dfx PDCA Design Champions

- Dfc Design for Components
- Dfp Design for Component Placement
- Dfsi Design for Signal Integrity
- Dfth Design for Thermal
- Dft Design for Test
- Dfa Design for Assembly
- Dfm Design for CM manufacturability
- Dfq Design for Quality for formal repeat review process

Mercury Dfx Team Member Elements

- DfR Automation Champion: Gene Bridgers
- Dfx Automation Champion: Darryl McKenney
 - Component Champions: Peter Godlewski and Bill Girard
 - Part Cost Design Champion: Darryl McKenney
 - PCB Design Champion: Steve Mariani
 - Thermal Reliability Champions: Tim Fleury and Don Blanchet
 - Signal Integrity Champion: Paul Wade and Kevin Jorczak
 - Operations Parts Champion: Bill Girard and Dennis Maroney
 - ME Reliability Champion: Mike Shorey
 - Oracle Item Master Synchronization Champion: Rich Carlson
 - Oracle and Omnify Champion: Dan Smith
 - CM Synchronization Champions: Darryl McKenney and Tom Orser
 - RoHS Champion: Darryl McKenney

Mercury Dfx PDCA results...

- We have proactive automated MTBFs before design placement in CAD.
- We have reduced our PCB design cycle by more than 25%.
- We have proactively modified more than 180 new designs for DfR alerts.
- We have reduced our prototype cycle time from 45+ days to 14-20 days.
- We have brought up the last 20+ major designs in record time.
 - 6U 32 layers, 15,000 vias, 5,000 components
- Our PCB Test access has gone from 47% to 90% +.
- Our Customer Field returns have reduced by more than 40%.
- Our OCOGS has reduced by more than 30%.
- Data collection metrics established for these major front end design initiatives.
- Engineering, Operations, Quality, and Supply Chain are a Team!!!

Pro-Active Dfx Integration is a journey not a destination.

It must be driven into the culture from senior management.

We have been institutionalizing this cultural change over 6 years.

Mercury PDCA Dfx Future Opportunities

Opportunities

- CM Tic-Toc Components
- EOL Obsolescence
- 2nd Source Issues
- Lead-Free Migration

We need to continue to drive quality, cost, reliability, and cycle time improvements.

IEEE Joint Section Reliability Chapter

Dramatic COTs Pro-Active
Design Dfx traced to
Innovative PDCA Practice

Thank You!

Darryl J. McKenney Gene Bridgers 6/15/2011

Questions?

Presenter Information

Gene Bridgers

Principal Hardware Reliability Engineer Mercury Computer Systems, Inc. Chelmsford, MA

gbridger@mc.com

Darryl McKenney

Director Engineering Services Mercury Computer Systems, Inc. Chelmsford MA

dmckenne@mc.com

