

Advanced System Level ESD Scanning

How much margin do you have?

March 12, 2014

Presented By Jeff Dunnihoo jeffhoo@pragma-design.com

> System ESD Architecture

PROBLEM 1: Hard System Fails

When ESD <u>Hard</u> Failures Occur...

(System Qualification Fails / Field Returns)

WHO IS AT FAULT?

Hard Failures and EOS at the chip level are *usually* obvious, but the solutions at the system level are not!

Figure 7: SEM image of the fully-silicided I/O buffer with Nwell ballasting technique on the buffer NMOS after 4.5kV ND-mode ESD stress.

Examples:

- * Secondary Discharges
- * Snapback Devices unloading bypass capacitors
- * Induced Cable Discharge Events

PROBLEM 2: Soft Failures

When Non-Destructive Soft Failures occur, or latent ESD damage accrues...

...how to identify the right system nodes to begin analysis on?

Figure 9: cross section and close-up of CUT A

Bridging the Chip ↔ System Gap

System ESD Event Analysis Techniques

Generation	Comparison Method	Debug Type	Comments
1 st "1752" - 2005	V_{CLAMP} , R_{DYN}	Paper Only	"Stand-alone" measurement > No DUP interaction
2 nd 2005 - 2010	I _{residual} Current into DUP	Primarily Hard Fails only	Simplistic "R _{DUP} "
3 rd & 4 th 2010 - ?	Current Reconstruction Scanning	Hard –and- Soft Failure Debug	Expensive Test Equipment Extremely Time Consuming
	Susceptibility Scan		
	Future Scanning? What does the system actually feel?		

System Transient Event Analysis Tools

 Several tools are now available to the EMC engineer to help resolve EMC issues, insure better reliability and future EMC compliance.

These include:

- ESD/EMC Immunity scanning
- RF Immunity Scanning
- EMI Emissions scanning with
- Phase Measurements
- Resonance Scanning
- Current Spreading scanning

1st Order ESD Analysis

- 1) Obvious Entry Vector
- 2) Obvious Shunt Path
- 3) Clear Failure Criteria
- > GFTDS

2^{nd} Order $I_{residual}$ ESD Analysis

I_{residual} ESD Simulation Concept

Accurate Modeling required to predict system level robustness with simulated ESD pulse applied

IT'S ONLY FOCUSED ON A SINGLE I/O LINE AT A TIME

ESD Susceptibility Scanning

http://pragma-design.com/pd/index.php/tools/9-services/12-esd-scanning

Susceptibility Scanning setup

Virtual Susceptibility Hotspot Diagram

STEP 1:

Inject an X*Y
Array of
Increasing steptest ESD pulses
Into a moving
loop probe (1kV, 2kV, 3kV etc at each point until failure)

STEP 2:

Log the ESD "fail level" in the step test where the system malfunctions, and plot it with a color enhanced 2D image to show ESD "hot spots"

Probe Resolution (Transmit)

- Hx/Hy/Hz fields must be considered or combined
- E fields can distort unshielded probe readings
- Don't take levels for granted...they have a spatial component

(Steps integrate levels)

Failure Criteria for Susceptibility?

(BER? Eye degradation? Catastrophic failure?)

LVDS port with TVS

LVDS w/ TVS after IEC testing; 500V steps thru 5kV; Then 12kV 3 times

Susceptibility Scanning

- Soft Failure Analysis of running system
- Inverse of EMI Scanning, same fixture
- Modified TLP (or HMM) pulse is directly applied to I/O Ports, time domain EMI scan of PCB
- 2D representation vs. time movie possible showing where the charge goes

^{*} Images Courtesy API

"Relative Susceptibility" Example

(Different Chip Versions, same Function)

ESD Current Reconstruction Scanning

Probe Resolution (Receive)

- Hx/Hy/Hz fields must be considered or combined
- E fields can distort unshielded probe readings
- Don't take levels for granted...they have a spatial component

(Steps integrate levels)

Modified TLP <u>Recorded</u> Voltage in PROBE

Modified TLP applied NODE Voltage

Current Reconstruction setup

Consider a small PCB section with an applied transient pulse.....

Note each trace is 16 samples deep..... ...and there are 3x3 points scanned.

Overlay the Susceptibility map to find localized Hotspots

Susceptibility does NOT necessarily imply **Vulnerability**!

Now slice up these scans into the depth of each scope capture.

Each frame is 9 points (3x3). There are 16 frames from t=1 to t=16.

Note: Trigger accuracy is critical!!!!!

Data Visualization of both methods.

Take Current Reconstruction...

...mask with Hotspots...

...and **NOW** you have potential vulnerabilities identified.

Note that the most critical System vulnerability in this case (right) was NOT the most susceptible area on the PCB (top).

Scanner Probe Traversing DUT

TLP/HMM Injection (USB)

Example of USB strike causing Ethernet soft error...

(1) ESD pulse is injected into USB port (Units in A/m)

(4) Some energy coupled into nearby nodes (Ethernet port) causing upset

(3) Residual Current shunted by clamps inside ASIC

Imagine debugging this "USB-caused Ethernet upset" without this tool!

ESD Scanning: Characterization vs. Qualification

Characterization vs Qualification

- We can see susceptibilities relative to previous "known good boards"
- We can quantify differences between good and problem boards and characterize an apparent margin
- This could be used to gauge a relative Figure of Merit for a new/unknown design.

Current Reconstruction Analysis of a System Board

http://pragma-design.com/pd/index.php/tools/9-services/11-current-reconstruction

Susceptibility Scanning (Moving Probe Inductive Stimulus)

Current Reconstruction (External I/O Stimulus)

SIGN

Pragma Design Confidential & 2012 Pragma Design, Inc.

Upset Root-Cause Analysis

Which System Level Discharge Path Causes ESD Upset Event

System vs. Module vs. Component Domains

What is the extent of your concern?

HMM/IEC = Whole System Used by Operator

Potential Transient Types and Entry Vectors

Next Generation:

PEAT Embedded ESD Scanning

Pragma ESD Analysis Tool

SOLUTION: Pragma ESD Analysis Tool

2nd Generation I_{residual}

→ 4th Generation Embedded Scan

Using PEAT

Susceptibility level and entry vector may be extracted from this dataset.

System Debug/Co-Design Example

```
PEAT3: PRAGMA ESD ANALYSIS TOOL
© PRAGMA DESIGN 2011, ALL ZAPS DESERVED
INITIATING COMMUNICATION WITH DUT
                                                                               PC
SUCCESSFUL!
ENTERING ESD ANALYSIS LOOP
READING JTAG REGISTERS....
3 DEVICES DETECTED
NO ESD EVENTS CURRENTLY LOGGED.
0022 LIFETIME ESD EVENTS LOGGED FOR THIS SYSTEM
ENTERING MONITOR LOOP 1/5/2013 09:08:43
APPLY ESD SIMULATOR NOW.
....*TRIGGER*
ESD NMI EVENT DETECTED
READING JTAG REGISTERS....
3 DEVICES DETECTED
2 DEVICES REPORT ESD ACTIVITY
#0023: [DEVICE 2] PIN A7 STAGE2
#0024: [DEVICE 2] PIN A8 STAGE2
       [DEVICE 2] PIN B6 STAGE3
#0026: [DEVICE 3] PIN 12 STAGE4 <-PERMANENT DAMAGE? (I0=0)
#0027: [DEVICE 3] PIN 13 STAGE2
0027 LIFETIME ESD EVENTS LOGGED FOR THIS SYSTEM ENTERING MONITOR LOOP
1/5/2013 09:12:18
APPLY ESD SIMULATOR NOW.
```


For more info....

Current Reconstruction Animation

 http://pragma-design.com/pd/index.php/tools/9-services/11-current-reconstruction

Susceptibility Scanning Animation

http://pragma-design.com/pd/index.php/tools/9-services/12-esd-scanning

Questions and Actual Scan Videos, email:

info(at)pragma-design(dot)com

For more info....

Scanning System Hardware:
Amber Precision - http://amberpi.com/

Other Pragma Design Services:

http://www.pragma-design.com/pd/index.php/services

