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Abstract

Complex one-of-a-kind systems are usually built to stringent performance and/or

reliability requirements. Nevertheless, they remain vulnerable to catastrophic events that

are often a combination of individually nonfatal events and/or processes. Also, the

reliability of such systems does not commonly involve catastrophe, but rather an

unexpected degradation of performance affecting the cost of maintenance and/or

ownership. Thus, lack of reliability does not necessarily means loss of the use of a system,

but also a decay of performance below a set threshold. Physics of failure (PoF) has been

the practice in several fields of engineering primarily involved with their design for life

expectancy, e.g., fatigue, corrosion, etc. New simulation-based approaches have been

used to address mission reliability by evaluating the impact of single failures to the key

outputs of the system during its operation. RAPSODE is a proposed approach that uses

behavioral models of the system’s dynamics and embedded PoF models to evaluate the

outcome of all combinations of failure and/or degradation sources, which are different for

different environments and mission goals. RAPSODE uses causal networks to identify all

possible failure/degradation states. At the design stage, RAPSODE helps isolate, among

all critical paths, the ones with the highest influence on mission reliability, thereby driving

targeted laboratory tests and fault-tolerant design. RAPSODE can be also used to analyze

complex systems with a human-in-the-loop.
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Contents and Significance

 RAPSODE is a method that combines behavioral models

of complex systems with Physics of Failure (PoF) models

to capture hard failures, degraded performance of

components/subsystems, and other risks, in a seamless

manner
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 Behavioral models are 

state-based Markov or 

non-Markov processes

 PoF models combine 

physics with statistics
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Contents and Significance (cont’d)

RAPSODE:

 Identifies and characterizes risk for failure modes that

are too complex to be identified solely through intuition

 Identifies causes for degraded system performance and

characterizes their risk

 Identifies and characterizes risks deriving from changes

in environmental conditions

 Identifies and characterizes complex phenomena

deriving from component interactions during field

operation

 Extends reliability metric based on component failure

with system performance and cost of ownership metrics
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Complex High-Reliability One-of-a-Kind Systems
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Source: World Wide Web

Examples
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Common Characteristics

 Engineered to avoid catastrophic failures

 Designed and built to have very long lives

 Limited quantities from one to a few hundreds

 Continuous operation or/and extreme environments

 Deployed in remote or inaccessible locations

 Downtime might be unacceptable or catastrophic

 Because the high cost of development and even higher 

cost of sustainment, they need to minimize the cost of 

ownership to be practical

 Scarce failure data and/or available only from dissimilar 

systems
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Type of Failures Not Well Treated by Traditional Methods 

 Cascading failures

 e.g., Power failure → removes cooling → effects avionics …

 Catastrophic event involving 3rd or higher failure level

 e.g., String A power + String B computer + String C cooling

 Slow degradation of components and/or unforeseen 

phenomena and/or interactions developing during field 

operation result in:

 Unexplainable degradation of system performance

 Higher than expected repair effort and costs

 Lower than expected availability

 Higher than expected down time

 Reduced life expectancy 

 Human-in-the-loop error

 e.g., unexpected software output to unforeseen input → incorrect 

hardware/software override by human misunderstanding
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NOTE: RAPSODE can be extended 

to address software reliability, but 

the subject is not treated in here
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Existing Foundations of Reliability Methods

 Mean Time Between Failure (MTBF) data from catalogs 

used in:

 Part stress/part count analyses and similar

 Failure mode and effects analysis (FMEA, FMECA) and similar

 PoF analyses also used in:

 Mechanical and thermal fatigue design analyses

 FEM and CFD for static and dynamic load analyses

 Electrical design, corrosion, diffusion, and similar analyses

 Monte Carlo simulations

 Dependency-type analyses, fault trees, Markov chains, 

and similar

 Reliability Block Diagrams (RBD), Bayesian 

Decomposition, and others 
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Limitations of Traditional Methods

 FMEA and dependency type approaches cannot easily deal 

with failure interactions beyond the first level

 RBDs and Fault Trees have difficulty dealing with partially 

cross-strapped architectures

 Methods based on analysis of components do not usually 

account for complex interactions phenomena

 Analyses based on constant failure rates (MTBF) can handle 

large systems, but might yield inaccurate results

 Methods based on PoF address time and mission-dependent 

loads, but are not yet system approaches

 Established reliability methods were not originally constructed 

to analyze human-in-the-loop

 Markov modeling and similar methods are powerful, but not 

yet widely adopted
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RAPSODE’s Key Features
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 Model based

 Whole system approach extending single component failure

 Leverages on knowledge/models already generated by system

design and analysis efforts

 Traditional component MTBFs are used in conjunction with PoF

 Autonomously generates all failure paths and trees

 Including cascading failures and failures beyond 3rd level

 Adopts discipline’s best practices, e.g., [1, 2]

 Allows for fault-tolerant design via sensitivity analysis [cf. 5]

 Associates degradation functions, “soft-failures,” to 

nonfatal phenomena (PoFs) affecting a system, e.g.

 Degradation of material properties, biases, drifts, gain shifts...

[Bracketed numbers are references listed on page 36]
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RAPSODE’s Key Features (cont’d)

 Interdependency and interactions among subsystems

 Changes in the environment

 Human actions/interactions, different as circumstances change

 (Soft failures, in particular association, conditions, that with time

might lead to bad performance and/or system failure)

 Identifies true drivers for PoF mechanisms and models

 Yields live reliability models of systems or families of

products in the field

 Adds new metrics to traditional mission reliability

 Cost of ownership

 System performance
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EXAMPLE: Reliability of a Whole Product Family
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Reliability of a Whole Product Family (cont’d)

Pfailure
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Reliability of a Whole Product Family (cont’d)

Pfailure
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Empirical and Analytical PoF

March 09, 2016

 The system’s model can embed traditional failure types 

for components with MBTFs from catalogs

 In addition, Empirical PoF models (E-PoF) can also be 

added to capture phenomena mainly affecting the 

functioning of the system, which might be:

 Changes in material properties, particle cluttering, wear out, 

aging, creep, corrosion, environment, etc.

 E-PoF are identified and modeled from pertinent field or 

laboratory data or from dissimilar systems that have been 

affected by the same phenomena 

 Analytical PoFs (A-PoF) are similar, but derived from 

analyses, e.g., FEM and/or dedicated laboratory tests of 

material/component properties
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Data Mining for Empirical PoF Models (E-PoF) 
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 Available data might be from different systems, but 

operating in similar environments

 Forensic data are usually discontinuous and inconclusive

 Identify underlying statistics and cross-reference with

forensic root-cause reports to yield insights
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 Insights help identify driving variables of PoFs, e.g.,

 Debris in fluids is stirred up by ON/OFFs and, if present, shows 

up early on yielding an infant-mortality type of failure

 Change in physical properties, aging, creep, develops with time 

even during dormancy and is a wear-out type of failure

 Fitting statistical models with correct variables helps 

explain raw data and yield PoF hazard functions 

Data Mining for Empirical PoF Models (E-PoF) (cont’d)
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Deriving Analytical PoF Models (A-PoF)

 Matching precision resistors (identical resistance) in 

precision voltage divider that is part of a larger system

 Resistors are hand picked from same production batch

 Resistors have same aging statistics EXAMPLE
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 Failure occurs when resistors drift apart

 Matching aging statistics yields zero expected value for 

relative drift 

 However, probability of zero relative drift changes with 

time

 Two PoF mechanisms are derived

 First is the difference in resistor resistances being above a set 

value (fail high)

 Second is the same being below a set value (fail low)

 Derived probabilities with time yield PoF hazard 

functions

Deriving Analytical PoF Models (A-PoF) (cont’d)
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RAPSODE Uses Behavioral Models of Mission

March 09, 2016

 Behavioral models capture system functions starting from

inputs and outputs

 They do not need to be high-fidelity dynamics models

 Behavioral models only deal with measurable 

input/outputs available from the field (called observables)

 Behavioral models are built to be computationally light 

and fast

 RAPSODE guides model development by progressively

identifying the subsystems that most impact the overall

mission’s reliability, e.g., cf. [5]

 Model-based methods like RAPSODE allow for fast

design iterations as plant and mission evolve
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New and Old Failures Types Are Added to Model

March 09, 2016

EXAMPLE

Probabilistic 

Failure or 

Degradation 

Models

Subsystem

Interface with 

Other Subsystems

Interface with 

Other 

Subsystems
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PoF #2

PoF #1

PoF #3
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Example of Behavioral Model of Hydraulic Actuation

March 09, 2016

actuatorpumps

controller relief valve

piping piping

bleeding

accumulator desired motionactual motion

GOAL
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actuatorpumps

controller relief valve

piping piping

bleeding

accumulator desired motionactual motion

examples of possible failures check for performed function

GOAL
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Behavioral Model of Hydraulic Actuation (cont’d)
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Functioning Without Failures
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Example of Functioning with a Failure
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Example of Functioning with a Failure (cont’d)

Page 26



S.B. Bortolami – Approved for public release

Simulations, Resulting Causal Network, and States

March 09, 2016

nominal 
operation

50% of pumps 
failed

supply line 
blown

umbilical power 
failure

mission-failure outcome

degraded-performance outcome

event occurring with rate hi

h1

h1,

h3

h4

h2

h4

second half of 
pumps failed

Pi probability of state to occur

i system-failed states

j system-operational states
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Simulation schedule: each circle

is a mission simulation to identify

all failures and operational states

[e.g. 1 and 4]

Related causal network

and associated  ODE
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Reliability and Sensitivity Analysis

March 09, 2016
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 Solution of ODE yields system reliability and whole

system’s sensitivity to individual failures

 Most sensitive failures call for higher modeling detail

and process iterates until model is satisfactory and/or

architecture is rendered fault tolerant (if so desired)

Probability of Single-Point Failures System Sensitivity to Failure Rates
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Networks and Associated ODEs
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 The probability Pi of a state changes accordingly to the 

failure rates λi, repair rates μi, and probabilities Pi of the 

states connected to it

 As an example, for a case of a Markov chain, the 

equilibrium at the node would be as follows (cf. [3]):

𝒅𝑷𝒊

𝒅𝒕
=  𝒋 λ𝒋,𝒊𝑃𝒋 +  𝒒 μ𝒒,𝒊𝑃𝒒 −  𝒏 λ𝒊,𝒒 +  𝒌 μ𝒊,𝒌 𝑃𝒊

 The ODE, so derived, allows for the calculation of Pi

 The concept can be applied to a general network; most 

applications result in Markov Chains

 Number of states and simulations can be from N to 
N+l−1
N−1

, e.g., for N=100, failure states can be 102 – 105
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Kafer, G.C. “Space Shuttle Entry / 

Landing Flight Control Design 

Description,” 1982.

Approach 

& landing

a
lt

it
u

d
e

time

failure 

occurs

perturbation

Planned path

NO Failures

Failure – acceptable 

response

Failure – system 

loss

Response

Man-in-the-Loop  EXAMPLE

 Possible PoFs are:

 Suboptimal control 

parameters

 Pilot exhaustion 

causing PIOs

 Pilot workload causing 

procedural error

 Spacecraft damage

 etc.

[cf. 4]
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Model Update – Living Reliability Models

 Model-based RAPSODE allows for failure count

prediction when a system or a family of products are in

the field

 Therefore, as field data become available, the reliability

model of the whole system or family can be tested and

refined

 Unforeseen failure mechanisms will have different

statistical signatures, which can be detected

 Different techniques, e.g., Bayesian, can be employed
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Conclusions and Tasks for the Future

 Traditional component failures are used together with

novel PoF models to capture complex interactions,

phenomena, environment, human behavior, etc.

 Empirical and Analytical PoF models can be standardized

and made into reusable libraries at the disposal of users

 CFD, FEM, and similar analyses for subsystems and components

 Models from legacy systems and data

 Other

 Performance has been added as a proper reliability

metrics in addition to system failure

 RAPSODE when used during the design phase drives

laboratory testing
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Conclusions and Tasks for the Future (cont’d)

 Simulation of all possible failure states can be very

computationally and memory consuming but, at the

present, this is no longer an issue

 Techniques are available to manage “state explosion”

 Behavioral modeling is required by the methods

 Failure count for a family of products can be prospectively

predicted and tracked starting from the design phase,

thereby making cost of ownership a proper reliability

metric in addition to system failure

 RAPSODE is a desirable expansion of Model-Based

Engineering to integrate statistical reliability effects with

functional performance modeling
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 F(t) is the probability of an “event,” i.e., failure, to occur by

a given time (Cumulative Distribution Function, or CDF)

 f(t)=dF(t)/dt, is the Probability Density Function (PDF) of

the failure event with respect to time

 R(t)=1-F(t) is the reliability function or the residual

probability of the event not to occur by a given time

 h(t)=f(t)/R(t), called the hazard function, is the PDF of

the failure event given that the item has survived to time t.
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Useful Probability Definitions
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Reliability Using Weibull Statistics

𝐹 𝑡 = 1 − 𝑒
−

𝑡

𝛼

𝛽

and ℎ 𝑡 =
𝛽

𝛼

𝑡

𝛼

𝛽−1
for 𝑡 > 0

 𝛽 < 1 indicates a decreasing failure rate or infant mortality failure type

 𝛽 = 1 indicates a constant failure rate

 𝛽 > 1 indicates an increasing failure rate or a wear-out failure type

March 09, 2016

log-log
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𝐹 𝑡 = 1 − 𝑒−λ𝑡 and ℎ 𝑡 =
λ𝑒−λ𝑡

𝑒−λ𝑡
= λ for 𝑡 > 0

PRACTICAL REMARKS:

 Constant Failure Rate is commonly used in reliability 

engineering

 λ Represents failures per unit of time, e.g., 10-9 [h-1]

 1/λ Is the MTBF, e.g., 109 [h]

 𝑀𝑇𝐵𝐹 By this time, half of the units are expected to have failed

 λ𝑇𝑜𝑡 =  λ𝑖 Is the failure rate of a system of i components

March 09, 2016

Special Case – Constant Failure Rate
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