

Class 0 – Who's at Risk & How to Avoid Quality and Reliability Failures

Ted Dangelmayer <u>www.dangelmayer.com</u>

- Preliminaries
- Class 0 Definition
- Brief Review: CDM & CBE
- Who's At Risk
 - Class 0 Technologies
- Class 0 Failure Mitigation

ESD Acronyms

- EPM:
 - ESD Program Management: A Total EPM Quality System
- Best Practices BenchmarkingTM
 - Relative Compliance to Best Practices
 - Quantifies Yield Improvement Opportunity
- EOS Electrical Overstress
 - IC Damage due to Electrical Over Voltage or Current
- HBM Human Body Model
- CDM Charged Device Model
- CBE Charged Board Event
- CDE Cable Discharge Event

DA ESD Class 0 Definition

- Class 0
 - Withstand Voltages Less than 250 volts HBM or CDM
- Class 00
 - Withstand Voltages Less than 125 volts HBM or CDM
- Class 000
 - Withstand Voltages Less than 50 volts HBM or CDM

Note: Class 0 Devices Prone To Higher Levels of Test Failures, Test Escapes and Latent Failures

ESDA Technology Roadmap Device Thresholds Are Declining

	Average Device Thresholds					
Model	1992	1998	2003	2007	2013	2014
НВМ	3800V	3000V	2200V	1500V	1000V	750V
CDM	800V	700V	675V	625V	325V	240V

IC Design Target Levels

Model	2009	2010
HBM	2000V	500V
CDM	500V	250V

ESD Damage A Quality & Reliability Issue

- Catastrophic
 - Device failure that is both sudden and complete. It involves complete loss of the required function
- Cumulative
 - Device failure resulting from multiple sub-threshold exposures to ESD
- Latent
 - Device failure over time due to prior ESD damage

Brief Review: CDM – CBE

"99.9% of ESD Failures are CDM/CBE/CDE!"

Andrew Olney, Analog Devices, Quality Director

& Industry Council, TI, Intel, etc.

S20.20 - Class 0 and CDM/CBE Limitations Yield Improvements by Adding CDM & CBE Best Practices

Note: Courtesy Herald Datanetics Itd. - 1st Class 0 Certified Manufacturing Operation <u>http://www.dangelmayer.com/class-0-certification.php</u> Each data point is confirmed ESD damage during production (typically 65 volt CDM/HBM ESD sensitivity) and different colors represent different products.

CBE (Charged Board Event) Test Set-Up

Olney et al (Analog Devices)

Charged Board Event ESD Damage Most FA Experts Misdiagnose as EOS!!!! Up to 50% of EOS Failures are CBE ESD! (2008)

Peak Currents of 25 amps Have Been Measured!

Courtesy: Andrew Olney, Quality Director, Analog Devices Copyright © 2013 Dangelmayer Associates

video

How to Classify Circuit Boards

- Based on Most Sensitive Component
 - Class I, 0, 00, 000
 - Must Have Both HBM & CDM Thresholds
 - Estimates Are Not Sufficient
 - W/O Data You are At Risk
- Consider Class 0 For Boards Due to CBE
 - Based on Criticality of Application
 - 25 Amp Discharge Currents Possible

Are You On A Collision Course Too?

"The Perfect Storm" Entire East Coast of USA October 1991

- Without Typical "Hurricane Warnings"!
 - Fishermen At Sea Caught Off-guard
 - 2000 Miles of Hurricane Like Conditions
- ESD Analogy:
 - CDM Generally Not Understood
 - Class 0 Trend Approaching Now
- A Very ESD Real Threat!
 - More Dangerous than Individually

Class 0 - Who's At Risk

Best Practices Benchmarking[™]

DefenseContractAerospace

Manufacturing Sites

None of the Sites Assessed Since 2001 had adequate CDM/CBE Controls in place initially!

Class 0 - CDM Threshold Dependencies

Larger Device Package Size

Higher Operating Speeds

Copyright © 2013 Dangelmayer Associates Ref: Industry Council WPII 20091

Class 0 Technologies

• ICs

- Nanoscale CMOS
- RF
- GaAs
- Optoelectronics
 - Lasers
 - LEDs

- Detectors (PIN, APD)
- MEMS
- MR Heads

Sylvania Application Notes

Class 0: Who's At Risk

- Semiconductor Backend
- Automation
- HBM Programs
 - S20.20 Programs
 - Manufacturing w/o
 - HBM & CDM Thresholds
 - CDM Best Practices
 - CBE Best Practices
- Circuit Board Manufacturing & Integration
- Contract Manufacturing
- Defense Manufacturing
- Aerospace Manufacturing
 - NASA
- Consumer Electronics Manufacturing
- Medical Manufacturing
- Automotive Manufacturing
- Wafer Fabrication & Wafer Saw
- New Construction & Outfitting New Lines

Circuit Board Manufacturing & Integration

• Myth:

Circuit Boards are Less Sensitive to ESD than Devices

- Widely Assumed True False Sense of Security
- Boards Are More Sensitive than Components
 - Up To 25 Amp Discharge Currents
- Nokia Asserts All ESD Failures Happen at Board Level
- Rapidly Escalating Probability of at least One Class 0
 Component per Board
- 50% of EOS Board Failures are ESD (CBE/CDE)

Variation in CBE Waveforms

A - High L, C B - Lower L, C; higher R C - Faster discharge (small C) D - Slower discharge (large C) E - Two RLC sources F - High L, R

Copyright © 2013 Dangelmayer

At Risk - Contract Manufacturing (CM)

- CM Programs are HBM S20.20
- On a Collision Course
 - Customer Generally Do Not Specify Class 0 Requirements
 - Customers Leave CDM & Class 0 Mitigation to CMs
 - CMs Require Customers Requirements to Take Action
 - Therefore a Collision Course

At Risk - Defense & Aerospace Manufacturing

- CDM & CBE Mitigation Not Required
 - Generally Not Well Understood at Factories
- Mil Standards 30 Years Outdated
 - S20.20 an HBM Standard
- Resistant To Change

At Risk - Consumer Electronics Manufacturing

- Often Performance & Cost Driven
 - High Speed
 - Technology Node Feature Sizes
 - Circuit Functionality
 - I/O Density
- Combination Prone to Class 0 Thresholds

At Risk - Medical Manufacturing

- FDA Recognizes S20.20
 - CDM & CBE Not Recognized
- Failures Life Threatening

At Risk - Automotive Manufacturing

- Expanding Application of Electronics
 - Less Experience with Electronics Manufacturing
 - Transitions from Mechanical to Electronic Difficult
- ESD Controls New to Automotive Repair Operations
 - Often Insufficient Controls

At Risk - New Construction & Outfitting New Lines

- Class 0 Often Overlooked for New Construction
 - ESD Engineers Often not Involved Early
 - Architects & Facility Engineers Make Decisions without ESD Input
 - Can Result in Significant Cost Penalties to Correct Errors
 - e.g. Segregation of Class 0 Lines May be Necessary
- Class 0 Material Properties Generally Not Considered
 - Flooring
 - High vs. Low Charging Selection
 - Conveyors, Material Transports, Automation & Workstations etc.
- Can Result in Replacement of Costly Items for Class 0 Applications

At Risk - Wafer Fabrication & Wafer Saw Operations

Typical Wafer Potential Difference Distributions

Class 000 – Wafer Saw Example Unexpected Results!

- CDM Threshold 35 Volts
- 92.2% Defective at Wafer Saw
- Failure Analysis
 - CDM Damage

Class 0 Failure Mitigation

Class 0 Mitigation Considerations

- Industry Standards Do Not Include CDM For Class 0!
 - Unlikely They Will in Foreseeable Future
 - Not Conducive to Standardization
 - Customization Essential
 - CDM Mitigation Techniques Not Well Known
 - Not Planned for 2014 Issue of S20.20
- 99.9% of ESD Component Failures are CDM/CBE/CDE
 - CDM & CBE Techniques Virtually the Same
 - Therefore:
 - Class 0 Controls <u>~</u> CDM Controls
 - CDM Mitigation Techniques Must Be Fully Understood
- **Proven CDM Best Practices Requirements**
 - In Private Sector Limited Access by Public
 - Class 0, 00, 000 Requirements
 - Escalate at 250 V, 125 V, 50 V

Best Industry Manufacturing Standard

> ANSI/ESDA S20.20 Scope: HBM >100V

Industry Standards Lag Technology 10 to 15 years

Thus:

S20.20 Customization is <u>Essential</u> for : Class 0, CBE, CDE & CDM Copyright © 2013 Dangelmayer Associates

CDM Mitigation Two Strategies – Which One is S20.20?

S20.20 - Class 0 and CDM/CBE Limitations Yield Improvements by Adding CDM & CBE Best Practices

Note: Courtesy Herald Datanetics Itd. - 1st Class 0 Certified Manufacturing Operation <u>http://www.dangelmayer.com/class-0-certification.php</u> Each data point is confirmed ESD damage during production (typically 65 volt CDM/HBM ESD sensitivity) and different colors represent different products.

Questions?

Ted Dangelmayer Dangelmayer Associates, LLC ted@dangelmayer.com www.dangelmayer.com 978 282 8888