IEEE Boston Reliability Seminar 9/11/13

Reliability of Li-ion Batteries

Martin Z. Bazant

Chemical Engineering & Mathematics

MIT

Matthew Pinson

Dan Cogswell

Peng Bai

Todd Ferguson

Alan Millner

Prior funding (2008-12)

Group Overview

- Nonlinear dynamics of electrochemical systems
- Physics + Mathematics + Engineering
- Theory + experiment

Templated electrodeposition for batteries, nanotechnology

Membraneless HBr flow battery for large scale energy storage

Shock electrodialysis for water desalination, separations

Battery performance and reliability under diverse operating conditions

Extreme Temperatures

Control Failures

Need for predictive mathematical models

Images: Autoblog Green, Gas 2, Boeing, Reuters Tory Aardvark, Cosmos Magazine

Cylindrical lithium-ion battery

Capacity Fade in Li-ion Batteries

Matthew Pinson (PhD student, Physics)

"Theory of SEI formation in rechargeable batteries: Capacity fade, lifetime statistics, and accelerated aging", MP & MZB, *J. Electrochem. Soc.* 160, A243 (2013).

"Internal Resistance Matching for Parallel-Connected Lithium-Ion Cells and Impacts on Battery Pack Cycle Life", R. Gogoana, MP, MZB and S. Sarma.

- Dominant fade mechanism at high voltage: Solid electrolyte interphase (SEI) growth
- Electrolyte decomposes at the anode (graphite) during recharging (>0.8 V)
- Apply new models to literature data for full cells with graphite, silicon anodes

Typical Electrolyte

LiPF₆ salt

Organic solvents

Argonne Lab cse.anl.gov

Simple Model of SEI Growth

Two parameters:

$$\frac{r}{m}\frac{ds}{dt} = k(c - Dc) = D\frac{Dc}{s}$$

- k SEI reaction rate
- D solvent diffusivity in SEI

$$s \sim \begin{cases} kt & \text{early times} \\ \sqrt{Dt} & \text{late times} \end{cases}$$

Theory of Accelerated Aging

Experimental data of Smith et al, J. Electrochem. Soc. (2011). Graphite/LiFePO4 (Data also fitted for Graphite/LiCoO2)

Porous Electrode Model

- Macroscopic mass, charge conservation, Butler-Volmer kinetics for intercalation & SEI growth; Solvent diffusion across SEI layers
- Results
 - SEI grows very uniformly
 - Isothermal fade depends only on cycle time
 - Current dependence due to heating

26

SEI Capacity Fade Mechanisms

Capacity

Fastest fade (silicon): 300% volume expansion creates fresh area; repeat SEI growth model each cycle

Experimental data for Si cells from Ji et al., Nano Energy, 2012.

Slowest fade (graphite): Attached SEI

Intermediate fade: SEI delamination

Lifetime Statistics

Effect of Statistical Variability on Reliability of a Battery Pack

- Rate dependence from localized heating (accelerated aging)
- Resistance variations lower pack cycle life (large max current)
- Test model for A123 battery packs (R. Gogoana, S. Sharma, Mech Eng)

MIT / Lincoln Lab Project Peng Bai, Alan Millner

Controlling PC and Testing Interface

Arbin High Current Battery Tester

Altairnano 13Ah Prismatic Battery Titanate anode Low voltage (1.5-2.8 V) "strain free"

A123 26650 Cylindrical Cells Graphite anode

Complete Testing System

Altairnano @5C/5C

From Fade to Failure

- Dendritic Li growth (cold, fast charge)
- Thermal runaway, fire... (short)
- Mechanical deformation causing
 - Loss of electric contacts
 - Damage in solid active particles
 - Leakage, contaminant entry
- Side reactions
 - Corrosion (moisture)
 - Leaching cathode ions (Fe, Ni...)

Batteryuniversity.com

Need for physics-based predictive models

Test Case: LiFePO4

- 1997: "Low power" Li_xFePO₄ (J. Goodenough)
- 2000s: Doping, coatings, nanoparticles... (Y.-M. Chiang)
- 2009: "Ultrafast" 10 sec. discharge (G. Ceder)

Why is nano so different?

- Phase separation?
- Role of surfaces?

Lithium Iron Phosphate

C + (mA h)

C - (mAh)

0.8

150

50 100 No. cycles

What Shrinking Core?

Phase boundaries along the surface

Chen & Richardson (2006)

Ramana et al (2009)

1D ion transport

<100nm particles →fast diffusion (ms)

Badi et al (2011)

Elastic Coherency Strain

Suppression of phase separation at high rates

Dan Cogswell & MZB, ACS Nano (2012)

Slow discharge I/I₀=.001 ~C/50 100x100 nm

Fast discharge I/I₀=.3 ~7C

Nucleation at Nanoparticle Surfaces

Dan Cogswell & MZB, Nano Letters (2013)

Accurate Model of Li_xFePO₄

Dan Cogswell, MZB, ACS Nano (2012)

- Ab initio elastic constants, misfit strain, surface energies (Ceder)
- Only 2 fitting params $\tilde{W} = 4.51, \tilde{K} = 8.90$

Porous Electrodes

Todd Ferguson and MZB, J. Electrochem Soc (2012)

- Low current (i/i_o=0.01, ~C/2)
 - narrow reaction front
 - mosaic instabilities

Small voltage step

 $C_{solid}(x,y,t)$

 $C_{\text{electrolyte}}(x,y,t)$

Fast Discharge

- Large current ($i/i_o = 4$, ~80C)
 - Suppressed macroscopic phase separation
 - Electrolyte depletion leads to capacity loss

Solid concentration

Electrolyte concentration

Voltage

Size-Dependent Nucleation

- Downward tilted voltage plateau
- Excellent fit to Dreyer (2010) data
- Next: Chueh et al (2012) data

Three Stable Phases: Li_xC_6 (Graphite)

Simulation vs. Experiment

Depth into electrode

Conclusion

- New physics-based models can inform:
 - Performance and reliability prediction
 - Battery design
 - Characterization and testing
 - Control systems
- Must capture:
 - Nonequilibrium thermodynamics
 - Reaction kinetics
 - Electrolyte side reactions

Rate-Dependent Morphology of Li₂O₂ Growth in Li-air batteries

