Architectural Design for Efficient Hardware Upgrade of High Performance IP Routers

esta@ieee.org

Office: 732-427-2804

Cell: 732-778-7791

Overview

- Problem Definition
- Solution Approach
- Details of Solution
 - Method to Unify Router Hardware (HW) Architecture
 - Candidate Switch Fabric Selection
 - Special Processing Agent
 - Interface Module (~ Line Card)
- Solution Summary
- Beyond Upgrade

Problem Definition

- Practical Problem
 - Multifaceted: Internet Services Providers (ISPs) / Router Vendors or Designers / end users
 - Originated: Common Backbone Systems Engineering Org. → AT&T WorldNet® Services
- AT&T WorldNet® Services: AT&T's high speed IP network \rightarrow contains 1000s of IP routers
- ISP Network Background Synopsis
 - 3 basic types of IP routers, in hierarchical layers \rightarrow edge / hub / backbone (bb)
 - Large ISP networks: ≥ 1 hub / bb layers
 - Very different functionalities / speeds
 - Usually can't quickly/easily interchange routers amongst layers, e.g., can't quickly take an "edge" and make it to become a "backbone", vice versa
 - \Rightarrow Find a way to address this issue as part of addressing the multifaceted problem

Problem Definition (cont.)

Multifaceted Problem

- bandwidth-intensive QoS / CoS applications in IP network
- *ISPs*: frequent need router upgrade to accommodate new end-user needs speed range / capacity / features → many network layers: \$\$\$\$\$ / time-consuming
- *Router vendors or designers*: challenge of designing flexible router HW architectures to adapt to frequently changing requirements

e.g., hard to design router to accommodate wide range of connection technologies / speeds, especially "on-demand". Many design constraints *mechanical* constraint – can't $\uparrow \#$ of I/O card slots "on-demand" without also expanding capacity of router switch fabrics

environmental constraint – more mechanical components (e.g., I/O card slots), harder to cool router

Problem Definition (cont.)

- Multifaceted Problem (cont.)
 - *End users*: problem of facing costly and uncertain network downtime
- Objective
 - Common Solution for efficient router HW upgrade:
 - (1) Flexible HW
 - (3) Avoid frequent "fork lift" upgrades
- (2) Fast upgrade
- (4) network layer independence

Solution Approach

- Solution: Router architectures with 3 capabilities for efficient HW upgrade
 - HW *scalability* to incrementally expand / adapt
 - Flexible *adaptation* to QoS / protocol features changes
 - (Bidirectional HW) *reconfigurability** to perform different roles & functions seamlessly *wherever* it is physically placed: *edge, hub or backbone*
- Approach:
 - basic router HW components / functionalities
 - generic packet processing tasks performed by different routers
 - KEY QUESTION: What are the generic tasks a router must do as an Edge? Hub? Backbone?
 - router HW architectural evolution & switch fabric (SF) designs
 - design advantages / limitations
 - existing architectural principles for HW scalability
 - A pre-requisite for reconfigurability

Details of Solution

- Contributions
 - Principles for HW scalability / bi-directional reconfigurability
 - 6 basic router / SF functional requirements & Primary SF selection criterion
 - Methodology for HW Architectural Unification
 - Set of router HW architectures capable of: scalability, adaptation, reconfigurability

a scalable reconfigurable IP router

- Detail Methodology for HW Architectural Unification
 - KEY observation and principle for reconfigurability
 - Unified router HW architecture across all layers of the network hierarchy

 \Rightarrow easy conversion amongst ALL layers

- TRICK: How to accomplish functional change in a router HW architecture \rightarrow to perform as edge, hub or backbone *on-demand*, with *off-the-shelf technologies*?
- Must 1st answer KEY question: what does a router do with an incoming packet that makes it an edge, hub or backbone?
 - Router Functionality Comparison
 - Examination of the packet processing functions

^{6/25/2009} Slide8

Unification of Router Architecture

- 1. Identify Distinguishing Functions (previous 2 slides)
- 2. Group Together these identified functions into a *separate* Functional Unit
 - SPA: Special Processing Agent, for processing packets with special needs
 - *Leave* the set of packet forwarding/data plane functions as a generic part of the (core) router architecture
- 3. Use identical General-Purpose Interface Module (~ Line Card) Slots in all routers

Basic Conceptual Router Architecture with SPA Inside Router

Main Router HW Components for HW Scalability and Bi-directional Reconfigurability

- Switch Fabric
- SPA
- Interface Module (IM)

How each contributes to our goals of a scalable reconfigurable router with the 3 capabilities for efficient HW upgrade:

- HW scalability
- Flexible *adaptation*
- (Bidirectional HW) reconfigurability

Switch Fabric (SF) Selection: Functional Requirements & Selection Criterion

- 1. Efficient uplink and route processor access
- 2. *Efficient downlink access*
- *3. Preservation of small packet delivery delay variation*
- 4. Efficient tree-based algorithm embedding capability
- 5. *Fault-tolerance*
- 6. *Ease of incremental (HW) expandability and contractibility* (*) SF's HW flexibility to scale according to traffic volume demands

(*) Primary Switch Fabric selection criterion

SF Compliance Score =
$$\sum_{reqt.1}^{reqt.N} \operatorname{Im} por \tan c e_{reqt.} \times Conformance_{SF}$$

Ten (10) Surveyed Switch Fabrics and associated scores

Three (3) Candidate Switch Fabrics for a Scalable Bi-directionally Reconfigurable IP router

 $\frac{\text{MIN-Multistage Interconnection' Network}}{(e.g., 2^{3} \times 2^{3} \text{ Delta})}$

Commercial Examples:

- Alcatel's 7770
- Caspian's Apeiro
- Hyperchip's PBR (PetaBit Router)

SPA for Efficient IP Router Hardware Upgrade

- 1. Responsible for making UPDATED PACKET HEADERS w/ new routing info/"tags" for headers of packets with special needs
- 2. Communication: betw. router's IM & SPA request/response
 - Request: header of a packet w/ classification or priority reqts.,
 e.g., in the TOS Byte or the 5-tuples
 - Response: contains updated packet header with new tag
 - + tags: header labels \rightarrow assign packet processing/forwarding priority
 - + assigned by matching header instructions (e.g., TOS Byte/5-tuples) per SPA's internal classification rules / policies
 - + for multi- /broad- cast services: SPA produces enough # of updated/tagged headers needed for the multi-/broad-cast session
- 3. Also communicates with router's processor to get updated topology information needed for use by the SPA's internal rules & policies
- 4. All internal fxnl units: reprogrammable HW, pipelined, for fast update

Effect of architectural arrangement

- SPA ~ sophisticated packet header classifier, provisions/ administers / processes headers w/ special reqts.
 → router's data plane functionality to bare minimum (e.g., processes packet per updated header "tags")
- 2. Unifies router's internal HW architecture by having only generic data plane functions for ALL routers

Solution Summary

- Switch Fabric can incrementally expand / contract → *HW Scalability (and also reconfigurability)*
- Use of reprogrammable HW-based Functional Units \rightarrow *Flexible adaptation*
- Use of SPA in all router architectures \rightarrow *bi-directional HW reconfigurability*

MAY SIGNIFICANTLY

- extend interval between router HW upgrades for ISPs, also allows efficient upgrade (or n/w emergency response)
- reduce complexity of designing flexible HW architectures to adapt to changing functionality/speed reqts for router vendors/designers
- minimize possibility of network upgrade downtime uncertainties for end users
- Such Architectures
 - Can serve as the basis for developing next generation IP routers
 - Directly applicable to the emerging concept of a single-layer IP network architecture*

 ^{*} Single-layer architectures have the advantage of ↓ the # of network layers, leading to less complex networks with fewer overall connections and fewer devices to manage.
 6/25/2009 Slide18

LôôKING AHEAD → Beyond Upgrade: Recent Areas of NSF Research this Solution can support

- Embedded systems
- Sensor networks

- Surveillance/Monitoring /AnalysisApplicable for *Military*
- Multicore systems for high end computing: very large scale appls (climate science, weather modeling/forecasting)

All needs speedy, high fidelity, high validity transmission of data, in real time as needed This architectural design fits in perfectly

THANK YOU

Elizabeth Suet Tse, PhD esta@ieee.org Office: 732-427-2804 Cell: 732-778-7791