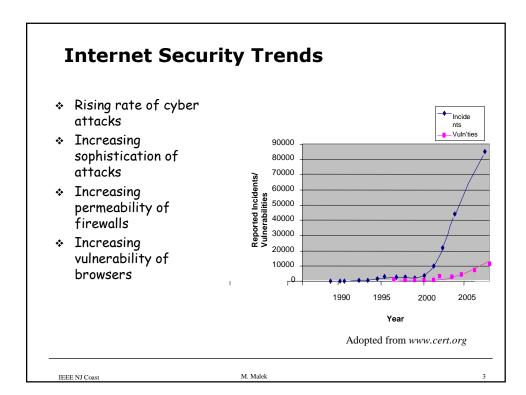
Tracking Cyber Attackers II

Manu Malek

<u>mmalek@ieee.org</u>


<u>www.cs.stevens.edu/~mmalek</u>

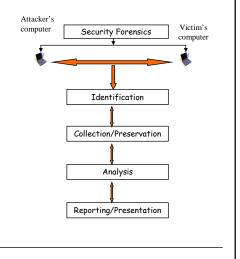
16 November 2009

IEEE NJ Coast M. Malek

Outline

- * Internet Security Trends
- * Need to Track Cyber Attackers
- * Methodology and Requirements
- * Forensic Tools
- Hiding files
- * Trojan Defense

Need to Track Cyber Attackers


- National security
 - Potential for breaking into computer networks controlling sensitive processes
- ❖ Economic
 - > Cyber attackers steal valuable information and intellectual property
- Legal
 - > Corporations need to be prepared for possible litigation, e.g., for
 - Allegations of discrimination
 - Intellectual property claims
- Law enforcement
 - > Agencies must be capable of tracking down law breakers

Methodology for Tracking Cyber Attackers

- Security (or IT) Forensic techniques are used to track cyber attackers.
- Security Forensics:

The process of

- > Identifying,
- > Collecting and preserving,
- > Analyzing, and
- Reporting and presenting digital evidence in a legally acceptable manner

IEEE NJ Coast M. Malek

IT Requirements for Security Forensics

- The following capabilities are needed:
 - Collecting relevant information from systems
 - > Being able to positively identify users who log on to systems
 - > Proving ownership and authenticity of evidence found on a system

Forensic Data Collection in Client Computers

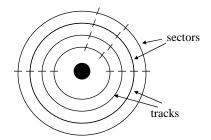
- Most operating systems provide significant logging capabilities.
 - Windows systems (2000/NT/XP) store log files in the directory %systemroot%\system32\config\
 - In UNIX, information about running processes is usually stored in var/log/syslog
- Protecting logs
 - > Attackers could delete or modify logs
 - > Logs should be protected

IEEE NJ Coast M. Malek

Network-based Evidence

- * Network monitoring can be performed to collect evidence:
 - Event monitoring: collecting network events, such as IDS alerts, network health monitoring alerts
 - > Trap-and-trace monitoring: transaction data such as protocol flags
 - > Full-content monitoring: collecting raw packets
- Network-based evidence can be found at endpoints and intermediate systems, such as
 - > Authentication servers
 - > Router logs
 - > Firewall logs
 - Event logs from IDSs
 - > Caller ID systems

Forensic Tools

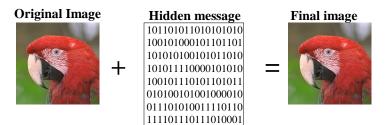

- * Many forensic tools and applications exist, e.g., for
 - > Hard disk duplication
 - > Text and file searching
 - > Internet history analysis
 - > Data hiding/revealing
 - > Network forensics
 - > Analysis of email files
- ❖ Some popular tools:
 - > EnCase for drive forensics
 - > E-Trust for industrial espionage cases
 - > Forensic Toolkit (FTK)
 - > ProDiscover
- Hardware and software-based key loggers can collect key strokes for specified periods of time.

IEEE NJ Coast M. Malek 9

Hidden Evidence

- Evidentiary data is not often readily observable.
- * Evidence could be in
 - Deleted files
 - > Encrypted files
 - Files in parts of the hard drive that are not readily exposed:
 - In System directory
 - ATA "Protected Area"
 - In file slacks
 - > Files hidden in other files

A Disk Platter


Last sector of a cluster

The last part of a file

File slack

Hiding Files in other Files

- * Files can be hidden in other files
- Steganography: storing hidden messages in such a way that no one other than the intended recipient knows of the existence of the message.

IEEE NJ Coast M. Malek 11

Example: The LSB Algorithm

- In a digital black and white image, where each pixel is represented by 8 bits to represent its gray value, use the least significant bit (LSB) of each 8-bit word for the hidden message.
- * The method can be extended to LSB plus additional bits.

1 LSB

LSB Plus Additional Bits

4 LSBs

IEEE NJ Coast M. Malek 13

S-Tools

- S-Tools is a freeware steganographic tool which can embed a message (audio file, image or text file) into an image of GIF or BMP format or audio in wav format.
- ${\color{red} \bigstar}$ It is available from $\underline{\text{http://www.spychecker.com}}.$

What is Trojan Defense?

The Trojan Defense:

The suspect claims "I didn't do it; someone else did."

- The suspect claims that his/her computer was broken into and files (images, malware) planted in it; thus not responsible for what the computer did.
- The Trojan defense presents two problems:
 - > The possibility of acquitting the guilty
 - > The possibility of convicting the innocent.
- It presents the forensic investigators with a major challenge: to prove or disprove that the accused person is responsible for the evidence found on the computer.

IEEE NJ Coast M. Malek 15

Trojans and Back-doors

- Trojan (or Trojan horse): a malicious program that is disguised as legitimate software
- The malicious program could, e.g.,
 - > download tools that could be used for intrusion
 - > upload sensitive data from the victim's computer
- Characteristics:
 - > A Trojan can be attached to otherwise useful software, or it can be stand-alone.
 - > The payload of a Trojan can be any type of malware, e.g., spyware, adware, back-door.
- back-door: a method of bypassing normal authentication which is hidden to casual inspection

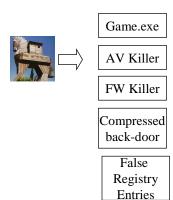
Trojan Making - Wrappers

- Many Trojans are created by Trojan-making kits, referred to as wrappers.
 - > GUI-based or command-line driven wrappers are available, e.g., EliteWrap (www.packetstormsecurity.org/trojans/)
- Trojan could be distributed to a mass audience, to targeted groups, or to individuals.
- Typical distribution mechanisms:
 - > Attachment to e-mail
 - > File sharing and removable media
 - > Direct implant via hacking

IEEE NJ Coast M. Malek 17

Trojan Making - Packers

- The terms "packer" and "compressor" refer to utilities which compress a file, thus changing its binary structure.
 - > Example: www.programmerstools.org
- Back-doors are usually detectable by Antivirus tools via their signatures.
- Even compressed back-doors would in most cases still be detectable.
- However, the attacker may use a compression algorithms not detectable by Antivirus tools.


Antivirus and Personal Firewall Killers

- Malicious tools exist that shut down or disable the Antivirus (AV) application or the Personal Firewall (FW) software on the victim's computer.
 - > Example: kiLLer (www.illmob.org)
- A victim may inadvertently execute malware which deploys an AV/FW killer.
 - > Then, forensic investigators often cannot see any events or logs alerting them to this incident.

IEEE NJ Coast M. Malek 19

A Trojan Scenario

- The victim downloads a game from a P2P network.
 - The game is a Trojan designed to deliver
 - > An AV killer and a FW killer in the payload
 - A routine to implant false registry keys into the victim's system
 - A back-door to allow access to the victim's machine.
- The AV is first disabled so that when the backdoor is decompressed, an AV response is not triggered.
- The FW Killer disables the personal FW software, allowing free traffic flow in and out of the victim's system.
- The back-door installs itself allowing the attacker remote access to the victim's machine.
- At the same time, the back-door notifies its "owner" of its presence via an outbound open port.
- The registry keys could
 - > Ensure stealth start-up of rogue processes
 - Add falsified histories relating to Internet surfing activity

Back-door/Trojans Forensics

- * Back-door/Trojan kits have three components:
 - > Server: the back-door itself, often wrapped up into the overall Trojan
 - > Client: to control the back-door from a remote location
 - > Creator Tool: to control the behavior of the back-door
- * Existence of only the *server* part on a computer could be used as Trojan Defense.
- But the presence of *client* and/or *creator* should raise questions about the Trojan Defense.
- Corroborating evidence could be found in FW or proxy server logs.

IEEE NJ Coast M. Malek 21

Conclusions

- * Internet security attacks are on the rise
- * Methods are needed to track cyber attackers
- * Logs play an essential role in security forensics
- * Effective tools are needed
- * Experience counts!