## Plasmonic Enhancement of Graphene Heterostructure based Terahertz Detectors

Vladimir Mitin University at Buffalo, Buffalo, NY 14260

> The work was done in collaboration with: Victor Ryzhii Taiichi Otsuji Vladimir Aleshkin Alexander Dubinov Maxim Ryzhii Michael Shur

## Outline

- Introduction and Motivation
- Optoelectronic Properties of Graphene
- Optically Pumped THz Lasers
- Current Injection THz Lasers
- Double Graphene Layer Structures
- Plasmonic Enhancement
- Summary

## Outline

- Introduction and Motivation
- Optoelectronic Properties of Graphene
- Optically Pumped THz Lasers
- Current Injection THz Lasers
- Double Graphene Layer Structures
- Plasmonic Enhancement
- Summary

#### <u>Carbon structures (carbon allotropies). What is graphene?</u>



Multiple disoriented non-Bernal stacked graphene Layer structure – Absolutely New Material for Optoelectronics!!!

## Synthesis of Graphene

#### Peeling from HOPG (highly oriented pyrolytic graphite)

Highest mobility obtained

nature

- Reproducibility is challenging
  - A. Geim and K. Novoselov, Nat. Mat. 6, 184 (2007).

#### Epitaxial graphene: thermal decomposition of hexagonal SiC

- Process temperature rather high ~1000
- Better mobility than CVD growth W.A. de Heer et al., Solid State Commun. 143, 92 (2007). M. Suemitsu and H. Fukidome, J. Phys. D 43, 374012 (2010).

#### CVD growth on metallic catalyst and transferring substrate













# Why graphene attracted attention of researchers?

## ?

# Why graphene attracted attention of researchers?

( $\epsilon = \pm v_F p$ , where  $v_F \approx 10^8$  cm/s).

Zero Band gap



Linear (rather than quadratic) dispersion

Just a nonolayer thick material

## Outline

- Introduction and Motivation
- Optoelectronic Properties of Graphene
- Optically Pumped THz Lasers
- Current Injection THz Lasers
- Double Graphene Layer Structures
- Plasmonic Enhancement
- Summary

## Ultra-Broadband Flat Optical Response Due to Gapless/Linear Energy Spectra



H. Choi et al., APL 94, 172102 (2009).

R.R. Nair et al., Science 320, 1308 (2008).

## Bandgap Engineering for Graphene



# Does absorphion coefficient of graphene depend on frequency?

# Does absorphion coefficient of graphene depend on frequency?

No, it is frequency independent



## Outline

- Introduction and Motivation
- Optoelectronic Properties of Graphene
- Optically Pumped THz Lasers
- Current Injection THz Lasers
- Double Graphene Layer Structures
- Plasmonic Enhancement
- Summary

## Carrier Relaxation Dynamics after Optical Pumping and Population Inversion at RT

#### **Major carrier scatterings**

Intraband optical-phonon (OP) scattering

- **Energy relaxation (100** fs ~ 1 ps)
- **Interband OP scattering**

**Carrier-carrier (CC) scattering** 

> Energy relaxation & Recombination (1~10 ps)

> Quasi-equilibration (10~100 fs)

#### **Distribution function**



Experiments suggest CC scattering is dominant at room temperature and/or strong excitation.

D. Sun et al., **PRL 101,** 157402 (**2008**). P.A. George et al., **Nano Lett. 8**, 4248 (**2008**). J. Dawlaty et al., **APL 92,** 042116 (**2008**). M. Breusing et al., **PRL 102**, 086809 (**2009**).

## Observation of Threshold Behavior, <sup>16</sup> Proving Stimulated THz Emission & Gain

Details with new data TBP at W4B.3 16:00~



## What is the Minimum Lasing Frequency?



### Hindering effects on stimulated emission mechanism

#### Recombination Processes

Population inversion is suppressed in the active region, for energies  $>\hbar\omega_0/2$ , while recombination is weak in the passive region,  $<\hbar\omega_0$ 

#### Long-Range Disorder

Separation of e-h pairs due to random potential increases the averaged min concentration for the population inversion condition

#### Small Active Volume

Since ~3 A thickness of graphene, active volume (and an output power) can be increased using large-area (or long) samples

#### Losses in Resonator

Losses of metal (or heavily-doped) resonators in QCL ~50 cm<sup>-1</sup>; a dielectric waveguide (e.g. Si-fiber) can be used as resonator

## Methods of e-h pairs excitation

Electrical injection through pn-junction

Optical pumping with lateral diffusion

Pulse optical excitation

## Outline

- Introduction and Motivation
- Optoelectronic Properties of Graphene
- Optically Pumped THz Lasers
- Current Injection THz Lasers
- Double Graphene Layer Structures
- Plasmonic Enhancement
- Summary

## Toward the Creation of Graphene<sup>20</sup> Current-Injection THz Lasers



## Benchmarking GRL over QCL & Raman-L

| Laser type<br>Figure<br>of merits | QCL                                 | Graphene-L                                    |                                                | Raman-L                            |
|-----------------------------------|-------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------|
|                                   | Injection pump                      | Injection pump                                | Optical pump                                   | Optical pump                       |
| Mechanism                         | ISB                                 | IB                                            |                                                | SRS                                |
| Quantum efficiency                | ~N of QCs                           | ~ 1                                           |                                                | low                                |
| Pumping efficiency                | high                                | high                                          | low @IR or<br>moderate @THz (CO <sub>2</sub> ) | very low                           |
| Gain/volume                       | low                                 | high<br>(large & & emission by plasmon modes) |                                                | very low                           |
| Freq. range                       | down to 1.5 THz<br>at lowered temp. | down to 1 THz<br>at elevated temp.            |                                                | down to 1 THz<br>at elevated temp. |
| Operating temp.                   | low                                 | could be high                                 |                                                | could be high                      |
| Heat spread                       | ×                                   | Ο                                             |                                                | ×                                  |
| Linewidth                         | very narrow                         | could be narrow<br>by plasmon instability     |                                                | narrow                             |
| Fabrication                       | complex SLs with MBE                | easy epi with MBE                             |                                                | easy bulky,fiber                   |
| Size                              | compact                             | compact                                       |                                                | large                              |

## Is it possible to get lasing from graphene?

## Is it possible to get lasing from graphene?

# Yes, optical and injection pumping can be achieved

## Outline

- Introduction and Motivation
- Optoelectronic Properties of Graphene
- Optically Pumped THz Lasers
- Current Injection THz Lasers
- Double Graphene Layer Structures
- Plasmonic Enhancement
- Summary

#### Double-GL structures and their features



- (1) Voltage control of electron and hole densities and interband and intraband absorption of radiation
- (2) Inter-GL tunneling, including resonant tunneling, negative differential conductivity
- (3) Plasma oscillations in double-GL structures – each GL serves as the gate for another GL!







Band diagrams of laser/PD structures with (a) photoemission-assisted inter-GL and (b) photo-absorption-assisted inter-GL radiative transistions





Simulated frequency dependence of the THz gain for the D-GL inter-GL transition laser for different band-offset energies between the Dirac points and of the THz gain for the D-GL intra-GL transition laser for different Fermi energies in GLs: (a) L = 5µm and W = 5µm, and (b) L = 15µm and W = 5µm. (c) Simulated spatial distributions of the photon electric field components in the TM mode in the DGL inter-GL transition laser.

# What is an advantage of a double graphene layer structure?

What is an advantage of a double graphene layer structure?

One of advantages is resonant tunneling at a controlled frequency of absorption and/or emission

## Outline

- Introduction and Motivation
- Optoelectronic Properties of Graphene
- Optically Pumped THz Lasers
- Current Injection THz Lasers
- Double Graphene Layer Structures
- Plasmonic Enhancement
- Summary

## **2D Plasmons in Graphene**

тоноки





V. Ryzhii, T. Otsuji, M. Ryzhii, V. Leiman, S. O. Yurchenko, V. Mitin, M. S. Shur, J. Appl. Phys. **112**, 104507 (2012)

#### <u>Responsivity vs signal frequency at different plasma and collision</u>



 $V_0 = 0.5 V$ ,  $R_V = 10^4 - 10^5 V/W$ Dependence of normalized responsivity  $R_V/\overline{R}_V$  versus bias voltage swing  $(V_0 - V_t)/\Delta V_t$ .n at different signal frequency  $\omega$ near the zeroth plasma resonance (upper panel) and near the first plasma resonance (lower panel).

V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V. Mitin, M. S. Shur, J. Phys. D: Appl. Phys. (2013)



V. Ryzhii, T. Otsujj, M. Ryzhii, and M. S. Shur, J. Phys. D: Appl. Phys. (2012)



$$R_{\omega} = \left(\frac{\pi e^2}{c\hbar}\right) \frac{8e|z_{u,l}|^2 \gamma}{[\hbar^2(\omega - \omega_{max})^2 + \gamma^2]} \left(\Sigma_i + \frac{\kappa\Delta}{4\pi e^2 d}\right) \theta$$
$$\frac{\Delta}{e} = V + V_0 - \sqrt{2VV_0 + V_0^2 + V_t^2}$$
$$\hbar\omega \simeq -\Delta + \hbar\omega_{dep} = \hbar\omega_{max}$$

The DLG-PD responsivity  $R_{\omega}$  versus the photon energy  $\hbar \omega$  calculated for different voltages *V* 

$$R_{\omega_{max}} = \left(\frac{e\kappa d}{c\hbar}\right) \left(\frac{\hbar\omega_{dep}}{\gamma}\right)\theta$$

This shows the dependencies of photon energy  $\hbar \omega_{max}$  and responsivity maximum  $R_{\omega max}$  on the applied voltage *V* calculated for different thicknesses of the inter-GL barrier layer *d*. A marked shift in the responsivity maxima with varying bias voltage enables the DGL-PD spectrum voltage tuning.





This shows the dependency of the responsivity maximum  $R_{\omega max}$  on the electron and hole density  $\Sigma_i$  and different bias voltages *V* and thicknesses *d*. The maximum of the DGL-PD responsivity markedly depends on electrical doping determined by the gate voltage  $V_{\alpha}$ 



$$\begin{aligned} R_{\omega}^{pin} \simeq \left(\frac{\pi e^2}{c\hbar}\right) \frac{eg^{pin}}{\hbar\omega}, \ R_{\omega}^{qwip} \simeq \left(\frac{e}{\hbar\omega}\right) \sigma_i \Sigma_i \ g^{qwip}\theta \\ \\ \frac{R_{\omega_{max}}}{R_{\omega_{max}}^{pin}} \simeq \frac{\hbar^2 \omega_{max} \omega_{dep}\theta}{\varepsilon_d \gamma \ g^{pin}}, \ \frac{R_{\omega_{max}}}{R_{\omega_{max}}^{qwip}} \simeq \frac{\hbar^2 \omega_{max} \omega_{dep}}{\varepsilon_i \gamma \ g^{qwip}} \\ \\ \varepsilon_d = 2\pi \ e^2/\kappa \ d \qquad \varepsilon_i = c\hbar\sigma_i \Sigma_i/\kappa \ d. \end{aligned}$$

This shows the ratios of DGL-PD and QWIP responsivity versus photon energy  $\hbar\omega_{max}$  for different electron and hole densities  $\Sigma_i$  and thicknesses of the inter-GL barrier layer, d



A graphene plasmonic heterostructure for THz lasers and detection

#### Enhanced THz Responsibilies via PA-RT & Plasmon Resonances in DGLs



## **Observed THz Gain Exceeding the e<sup>2</sup>/4ħ Limit by Orders** 39



## Do plasmonics add frequency selectivity?

## Do plasmonics add frequency selectivity?

2D plasmons in graphene enhance the lightmatter interaction.



Concepts of THz & IR devices based on graphene structures were reviewed.

Optically pumped graphene can generate in a wide THz range.

Current injection G-Lasers, implementing in dual gate G-FETs, have a great advantage to dramatically decrease the equivalent pumping photon energy, resulting in NDC at rather low injection currents.

Double graphene layer structure is a promising engineered material.

2D plasmons in graphene enhance the light-matter interaction.

As preliminary experimental results ehow, the presented devices are realistic: they can exhibit very high performance



#### Introduction:

## Population Inversion in Optically Pumped Graphene Original Idea for GR-THz Lasers





Range of negative dynamic conductivity (at sufficiently strong optical pumping) – Interband transitions vs intraband (Drude absorption)

## **Population Inversion of e-h Pairs**, **Negative Absorption, and Lasing**

Limitations of continuous scheme (heating by optical phonons, non-radiative recombination, etc.) may be resolved under transient regime of pumping

#### Model for transient regime of lasing

**Population inversion with quasi-**Fermi energy  $\varepsilon_{\rm F}$  takes place during  $t_{p}$ .  $_{eq} < t < t_{rec}$ , where  $t_{p-eq}$  duration of pumping and subsequent emission of optical phonons

 $\Box$  Unstable mode with population  $N_{ot}$  $\sim \exp(t/t_{rad})$  propagates along resonator of length *L* during time ~  $t_{rad}$   $\Box$  Minimal length  $L > c / \sqrt{\kappa t_{rad}}$ 

 $\Box$  If  $t_{rad} \sim 10$  ps (see below), one obtains L > 0.5 mm

□ Output power ~10 - 100 pW per pulse because an active volume is very small



Sketch of graphene (red) in resonator under pulse optical pumping with mid-IR output

## Introduction: Femtosecond Population Inversion in Heavily-Doped Graphene



(a) Schematics of ultrafast optical interband excitations.

(b) Dispersion of our electron-doped graphene, monolayers (μ=0.4 eV) illustrating state filling (left) and band filling (right) that leads to stimulated emission from a broadband, inverted population (red arrow). Also shown together is the pump pulse spectrum.



(a) Ultrafast  $\Delta R/R$  at 1.55 eV pump, 1.16 eV probe, at 1116 and 3960 µJ/cm<sup>2</sup>, and 1.33 eV probe, at 4390 µJ/cm<sup>2</sup>, respectively. Blue arrow marks  $\Delta R/R/_c$ =-1.4582% for zero conductivity. Shown together are the pump and probe spectra. (b) The peak transient reflectivity as function of the pump fluence. (c) The extracted transient fermion density at 40 fs (blue dots), as explained in the text, which is significantly lower than  $A_0 I_p = \hbar \omega$  obtained from the universal conductivity (open circles), as illustrated in shadow area. (d) Theory (lines) vs experimental values (rectangles) for nondegenerate (red) and degenerate (blue) transient conductivity at 40 fs. Shown together (lines) are two model simulations with the single (green) or distinct (black) chemical potentials. [Phys. Rev. Lett. 108, 167401 (2012)]



(a)  $I_{\text{sampling}}$  for excitation positions starting at the graphene–metal interface in steps of 2 µm (from bottom to top) along the dotted line in Fig. b. Data are offset for clarity. The parameters are  $E_{\text{laser}} = 1.59 \text{ eV}$ ,  $P_{\text{laser}} = 800 \text{ µW}$ ,  $V_{\text{sd}} = 0 \text{ V}$ , and T = 300 K.

(b) Time-resolved  $I_{\text{sampling}}$  at T = 77 K for the same parameters as in (a). The position y (right) refers to the dotted line in Fig. b.

(c) Corresponding fast-Fourier-transformation of  $I_{\text{sampling}}$  as displayed in (a).

## <u>Introduction:</u> Time-resolved photocurrents and THz generation in suspended graphene



(a) Suspended graphene onto a coplanar stripline circuit. A pump laser pulse focused onto the graphene-sheet generates the time-integrated photocurrent  $I_{photo}$ . Scale bar, 20 µm. (b) Spatially resolved scan of  $I_{photo}$ . Parameters are  $E_{laser} = 1.6 \text{ eV}$ ,  $P_{laser} = 200 \text{ µW}$ ,  $V_{sd} = 0 \text{ V}$ . (c) Single line-sweep of  $I_{photo}$  along the dotted line in (b).

(d) The time-resolved photocurrent response  $I_{\text{sampling}}$  is measured at the field probe, located ~0.3 mm away from the graphene. The probe laser pulse (red circle) triggers the read-out of  $I_{\text{sampling}}$ . All measurements at T=300 K (Nature Comm. 3, 646, 2012)

#### Photon-Assisted Resonant Tunneling Enabling Novel THz Functionalities



#### Double-GL structures resonant tunneling



Operation principle: -THz input signals result in inter-GL nonlinear tunneling or thermionic current

-Rectified component of this current – output signal

-Excitation of plasma oscillations leads to resonant increase in inter-GL current and output signal



Resonant inter-GL tunneling promotes high detector responsivity!!!

Each GL serves as a gate for another GL!!! V. Ryzhii, T. Otsuji, M. Ryzhii, V. Mitin and M. S. Shur, J. Phys. D: Appl. Phys. (2012) V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V. Mitin, M. S. Shur, J. Phys. D: Appl. Phys. (2013)