## Advanced Computational Tools for Antenna Placement Studies

## Dr. C. J. Reddy

President
EM Software \& Systems (USA) Inc www.emssusa.com

## Problem/ Issue

Antenna and Antenna Array Analysis on various platforms

- Antenna Element Design
- Array Design

- In-situ analysis of the array integrated on platforms



## Problem/ Issue

## EM Analysis tools are required for

- Design of antenna elements
- Array analysis
- In-situ performance analysis of antenna arrays mounted on aircraft, shipboard and ground platforms


## Problem/ Issue




Studying VHF antenna placement on a naval platform.


Specification of cable paths for automotive cable coupling analysis.


Automotive EMC measurement installation with $\log$ periodic source.


4


Radiation hazard analysis for personal radios carried inside an automobile. The human phantoms are modelled with the FEM, while the antennas and bodywork are modelled with the MOM.

## Computational Electromagnetics

- Numerical solution based on approximation of currents and/or fields
- Desirable properties of CEM methods:
- Approximation may be reduced in order to increase accuracy, approaching the analytical result
- Computational cost (CPU time \& memory) must be as low as possible



## Numerical Techniques

- Method of Moments
- Antenna Eement Design
- Multilevel Fast Multipole Method ( MLFMM)
- Antenna/Array Design/Platform Analysis
- Hybrid MoM/ Physical Optics (PO)
- Platform Analysis
- Hybrid MoM/ Uniform Theory of Diffraction (UTD)
- Platform Analysis


## EM Simulation Map: CEM Methods



Complexity of Materials

## EM Simulation Map: CEM Methods



## Method of Moments



Geometry

wire segments
Linear Basis
Functions on wire segments

- Create CAD Model of the geometry
- Create surface mesh - triangles
- Applying the equivalence principle electric or magnetic currents assumed to be unknowns
- RWG basis functions are used
- A set of linear equations are formed

$$
\mathrm{Z} \mathrm{I}=\mathrm{V}
$$

$\mathrm{Z}=\mathrm{NXN}$ complex matrix
I = Unknown current vector
$\mathrm{V}=$ Known Excitation vector

- Solving this equation, unknown currents on each triangle is found


RWG Basis Functions on triangles

## Method of Moments

## Surface Currents

Near Fields


Antenna Characteristics can be found from the currents calculated:

- Near- or Far-fields
- Input impedances
- S-parameters etc


## Very Thin Low-Profile Antenna Using Novel High Impedance Surface (HIS) Ground Plane





Gopinath Gampala, Rohit Sammeta and C.J.Reddy, "A thin, low profile antenna using a novel high impedance surface", Microwave Journal, Technical Feature, July 2010.

## Three Dual-Band Miniaturized I nverted F Antennas I ntegrated in a PDA for MI MO Applications

2006 IEEE APS Symposium


Wireless LAN (WLAN)
2.45GHz and 5.2GHz

## Prototype

Figure 1: Simulation models for planar (a) and buckled (b) antennas

FEKO Model

(a)
(b) Integrated in a PDA for MIMO Applications", 2006 IEEE APS Symposium, Albuquerque, July 2006

# Three Dual-Band Miniaturized I nverted F Antennas I ntegrated in a PDA for MI MO Applications 

2006 IEEE APS Symposium



Stephan Schulteis, Christiane Kuhnert and Werner Wiesbeck, "Three Dual-Band Miniaturized Inverted F Antennas Integrated in a PDA for MIMO Applications", 2006 IEEE APS Symposium, Albuquerque, July 2006

## Design and Analysis of a Novel Pent-band Antenna for Handheld Applications

GSM 800/900/1800/1900 and UMTS 2200


## Design and Analysis of a Novel Pent-band Antenna for Handheld Applications



Shirook Ali, Houssam Kanj, Dong Wang, Wen Geyi,"Design and Analysis of a Novel Pent-band Antenna for Handheld Applications",2008 Applied Computational Electromagnetic Symposium, Niagara Falls, April 2008

## TWO ARM ARCHI MEDEAN SPI RAL HELI CAL ANTENNA WITH WRAP AROUND ABSORBER



Sandeep Palreddy, and Rudolf Cheung, "Two Arm Archimedean Spiral Helical Antenna With Wrap Around Absorber", 2009
Applied Computational Electromagnetic Symposium, Monterey Bay, March 2009
$\frac{4}{5}$

## Accurate Simulation of Rotman Lens



Junwei Dong, Amir I Zaghloul, Rensheng Sun, C.J. Reddy and Steven Weiss, "Accurate Simulation of Rotman Lens using FEKO", 2009 Applied Computational Electromagnetic Symposium, Monterey Bay, March 2009

## Antenna Placement on Electrically Platform

## ATR-42 (Avions de Transport Regional)



Fig. 1. CAD model of ATR42 aircraft.
M. V. T. Heckler* and A. Dreher, Analysis of Monopoles Installed on Airframes, 2005 IEEE APS Symposium, Washington DC, July 2005

## Antenna Placement on Electrically Platform

VHF Antennas - 126MHz

bottom position
Fig. 2. Indication of the positions of VHF antennas.
$\lambda / 8$ mesh, 4,245 triangles
Calculations with MoM using Magnetic Symmetry
MLFMM - no symmetry is used
Measurements with $1 / 12^{\text {th }}$ scale model
M. V. T. Heckler* and A. Dreher, Analysis of Monopoles Installed on Airframes, 2005 IEEE APS Symposium, Washington DC, July 2005

## Antenna Placement on Electrically Platform



## VHF Com Antennas - 126MHz <br> Top Antenna Patterns



Fig. 3. Directivity in the $\phi=0^{\circ}$ (top position).


Fig. 4. Directivity in the $\phi=90^{\circ}$ (top position).
M. V. T. Heckler* and A. Dreher, Analysis of Monopoles Installed on Airframes, 2005 IEEE APS Symposium, Washington DC, July 2005

## Antenna Placement on Electrically Platform

## VHF Com Antennas - 126MHz Bottom Antenna Patterns



Fig. 5. Directivity in the $\phi=0^{\circ}$ (bottom position).


Fig. 6. Directivity in the $\phi=90^{\circ}$ (bottom position).
M. V. T. Heckler* and A. Dreher, Analysis of Monopoles Installed on Airframes, 2005 IEEE APS Symposium, Washington DC, July 2005

## Antennas on Platforms

Surface current [dBA/n])
.45 .4
600 MHz

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics ", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009
$\square$

## 3D Radiation Pattern at 600 MHz



[^0]$\square$

## Memory/ CPU requirement for the MoM



## 600 MHz

| Frequency | Electrical Size of Aircraft |  | Unknowns | Peak Memory | CPU-time |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | length | wingspan |  | 542.6 MB | 3.9 min |
| 200 MHz | $9.7 \lambda$ | $5.3 \lambda$ | 5,874 | 3.0 GB | 29.0 min |
| 300 MHz | $14.5 \lambda$ | $8 \lambda$ | 14,189 | 13.0 GB | 3.0 hours |
| 450 MHz | $21.75 \lambda$ | $29 \lambda$ | $16 \lambda$ | 44,627 | 30.0 GB |
| 600 MHz | 29 | 9.1 hours |  |  |  |

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics ", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

## Multilevel Fast Multipole Method (MLFMM)

MoM based on the solution of a system of linear equations

$$
\mathrm{Z} \mathrm{I}=\mathrm{V} \quad \longleftrightarrow \quad \mathrm{I}=\mathrm{Z}^{-1} \mathrm{~V}
$$

Impedance matrix $\mathbf{Z}$ describes interaction of n.th element with m.th element

$$
Z=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & Z_{m n} & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]
$$

$$
\text { source element } \mathrm{n}
$$

observation element m

$\rightarrow$ LU-decomposition requires $O\left(N^{3}\right)$ operations and $O\left(N^{2}\right)$ memory

## Resource Requirement

## Example:

Automotive simulation
at 2 GHz instead of 1 GHz :
$f \longrightarrow 2 f$
$N \longrightarrow 4 N$


| Complexity | Factor |
| :--- | ---: |
| $O\left(N^{3}\right)$ | 64 |
| $O\left(N^{2}\right)$ | 16 |
| $O(N)$ | 4 |
| $O(N \log N)$ | $4 \cdot\left(1+\frac{\log 4}{\log N}\right)<5$ |
| $O\left(N \log ^{2} N\right)$ | $4 \cdot\left(1+\frac{2 \log 4}{\log N}+\frac{\log ^{2} 4}{\log ^{2} N}\right)<6$ |

## MoM Solution Acceleration

Adaptive Cross-Approximation:

- Effective for:
- Low-frequency problems (sub-wavelength geometric detail)
- Planar Greens function problems
- Large savings in memory and runtime over traditional implementation

Hardware Acceleration:


ACA hierarchical matrix

- Parallelization
- Multi-core
- Multi-CPU
- Cluster
- Graphical Processing Unit (GPU)
- NVIDIA CUDA enabled
decomposition



## Multilevel Fast Multipole Method (MLFMM)

- Multilevel implementation:
- Divide space into boxes
- Aggregation (A)
- Translation (T)
- Disaggregation (D)

Source region


## Resource Requirement

## Example:

Automotive simulation
at 2 GHz instead of 1 GHz :
$f \longrightarrow 2 f$
$N \longrightarrow 4 N$


| Complexity | Factor |
| :--- | ---: |
| $O\left(N^{3}\right)$ | 64 |
| $O\left(N^{2}\right)$ | 16 |
| $O(N)$ | 4 |
| $O(N \log N)$ | $4 \cdot\left(1+\frac{\log 4}{\log N}\right)<5$ |
| $O\left(N \log ^{2} N\right)$ | $4 \cdot\left(1+\frac{2 \log 4}{\log N}+\frac{\log ^{2} 4}{\log ^{2} N}\right)<6$ |

## MLFMM

## Memory requirement for the MLFMM



General scaling of the MLFMM:

Memory $N \log (N)$

CPU time $N \log ^{2}(N)$
$\rightarrow$ Confirmed by examples

## Possible with MLFMM

Asymptotic predictions of memory usage for the MoM with and without MLFMM.

| N | MoM | MLFMM | Application |
| :---: | :---: | :---: | :---: |
| 100000 | 75 GByte | 1 GByte | - Military aircraft at 690 MHz <br> - Ship ( $\mathbf{1 1 5 ~ m ~ x ~} \mathbf{1 4} \mathbf{~ m}$ ) at $107 \mathbf{~ M H z}$ <br> - Reflector antenna with aperture size 19 1 |
| 200000 | 300 GByte | 2 GByte | - Military aircraft at 960 MHz <br> - Ship ( $\mathbf{1 1 5 ~ m ~ x ~} \mathbf{1 4} \mathbf{~ m}$ ) at $150 \mathbf{~ M H z}$ <br> - Reflector antenna with aperture size 27 $\lambda$ |
| 400000 | 1.2 TByte | 4.5 GByte | - Military aircraft at 1.37 GHz <br> - Ship ( 115 m x 14 m) at 214 MHz <br> - Reflector antenna with aperture size 38 |
| 1000000 | 7.5 TByte | 12 GByte | - Military aircraft at 2.2 GHz <br> - Ship ( $\mathbf{1 1 5} \mathbf{~ m ~ x ~} \mathbf{1 4} \mathbf{~ m}$ ) at $\mathbf{3 4 0} \mathbf{~ M H z}$ <br> - Reflector antenna with aperture size 60 1 |

## Comparison between MoM and MLFMM at 600 MHz

| Directivity $(\mathrm{Phi}=0 \mathrm{deg})$ |
| :---: |
| $\square \mathrm{MoM} \rightarrow \mathrm{MLFMM}$ |



Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics ", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

# Memory/ CPU requirement for the MLFMM 



Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics ", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

## Physical Optics



$$
\mathbf{J}(\mathbf{r})=\hat{n} \times \mathbf{H}(\mathbf{r})=\hat{n} \times\left[\mathbf{H}^{i}(\mathbf{r})+\mathbf{H}^{r}(\mathbf{r})\right]
$$

$$
\mathbf{J}(\mathbf{r})=2 \hat{n} \times \mathbf{H}^{i}(\mathbf{r})
$$

# Hybrid MoM/ Physical Optics (PO) Technique 

Decomposition of domain into MoM and asymptotic region


## Validation of FEKO for Electrically Large Problem

Air Traffic Control Antenna at 1GHz


Fig. 7. Indication of the ATC antenna position.
M. V. T. Heckler* and A. Dreher, Analysis of Monopoles Installed on Airframes, 2005 IEEE APS Symposium, Washington DC, July 2005

## Validation of FEKO for Electrically Large Problem

Air Traffic Control Antenna at 1GHz


Fig. 8. Directivity in the $\phi=0^{\circ}$.


Fig. 9. Directivity in the $\phi=90^{\circ}$.

# Comparison between MLFMM and MoM/ PO at 3 GHz 



Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics ", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

## Memory/ CPU requirement for the MoM/ PO

| Frequency | Electrical Size of Aircraft |  | Unknowns | Peak Memory | CPU-time |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | length | wingspan |  |  |  |
| 3 GHz | $145 \lambda$ | $80 \lambda$ | 808,336 | 570.0 MB | 8.0 min |
| 8 GHz | $387 \lambda$ | $213 \lambda$ | $5,075,060$ | 4.0 GB | 1.4 hours |
| 15 GHz | $725 \lambda$ | $400 \lambda$ | $17,271,199$ | 16.0 GB | 8.9 hours |
| 20 GHz | $967 \lambda$ | $533 \lambda$ | $30,437,010$ | 30.9 GB | 20.1 hours |

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics ", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

## Summary of MoM, MLFMM, and MoM/ PO

|  | frequency | Electrical Size |  | \# of <br> Unknowns | Peak <br> Memory | CPU-time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | length | wingspan |  |  |  |
| MoM symmetry (mesh size -- $\lambda / 8)$ | 200 MHz | $9.7 \lambda$ | $5.3 \lambda$ | 5,874 | 542.6 MB | 3.9 min |
|  | 300 MHz | $14.5 \lambda$ | $8 \lambda$ | 14,189 | 3.0 GB | 29.0 min |
|  | 450 MHz | $21.75 \lambda$ | $12 \lambda$ | 29,389 | 13.0 GB | 3.0 hours |
|  | 600 MHz | $29 \lambda$ | $16 \lambda$ | 44,627 | 30.0 GB | 9.1 hours |
| MLFMM (mesh size -- $\lambda / 8)$ | 600 MHz | $29 \lambda$ | $16 \lambda$ | 89,866 | 1.3 GB | 20.0 min |
|  | 1 GHz | $48.3 \lambda$ | $26.7 \lambda$ | 407,648 | 3.7 GB | 1.1 hours |
|  | 2 GHz | $96.6 \lambda$ | $53.3 \lambda$ | 1,320,430 | 10.5 GB | 3.0 hours |
|  | 3 GHz | $145 \lambda$ | $80 \lambda$ | 2,736,834 | 21.4 GB | 7.0 hours |
| MoM/PO symmetry (mesh size $--\lambda / 6)$ | 3 GHz | $145 \lambda$ | $80 \lambda$ | 808,336 | 570.0 MB | 8.0 min |
|  | 8 GHz | $387 \lambda$ | $213 \lambda$ | 5,075,060 | 4.0 GB | 1.4 hours |
|  | 15 GHz | $725 \lambda$ | $400 \lambda$ | 17,271,199 | 16.0 GB | 8.9 hours |
|  | 20 GHz | $967 \lambda$ | $533 \lambda$ | 30,437,010 | 30.9 GB | 20.1 hours |

## Modern High Performance Computing



## 2-Node Cluster

Intel Xeon E5-2650 2.0GHz 8-core 20MB cache
Each Node: 2 CPUs ( 16 cores), 256GB RAM
Total: 4 CPUs ( 32 cores), 512 GB RAM Infiband Interconnect

## Resource Requirements

| Method | Frequency | Triangles |  | Unknowns | Memory | Time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOM | 950 MHz |  | 224 | 121537 | 222.1 GB | 4.7 hr |
| MLFMM | 950 MHz |  | 524 | 243726 | 11.6 GB | 0.1 hr |
| MLFMM | 7.00 GHz | 81 | 93402 | 12289643 | 220.8 GB | 2.6 hr |
| PO | 7.00 GHz |  | 19950 | 3838847 | 36.9 GB | 0.5 hr |
| Method | Frequency | Electri | cal Size | Unknowns | Memory | Time |
| PO | 3 GHz | $145 \lambda$ | $80 \lambda$ | 808336 | . 57 GB | 0.13 hr |
| PO | 8 GHz | $387 \lambda$ | $213 \lambda$ | 5075060 | 4.0 GB | 1.40 hr |
| PO | 15 GHz | $725 \lambda$ | $400 \lambda$ | 17271199 | 16.0 GB | 8.90 hr |
| PO | 20 GHz | $967 \lambda$ | $533 \lambda$ | 30437010 | 31.0 GB | 20.10 hr |
| PO | 45 GHz | $2175 \lambda$ | $1200 \lambda$ | 108435565 | 128.0 GB | 93.50 hr |
| PO | 60 GHz | $2901 \lambda$ | $1599 \lambda$ | 191095846 | 248.0 GB | 210.00 hr |

## Currents



## $950 \mathrm{MHz}: \phi=0^{\mathbf{o}}$



## $950 \mathrm{MHz}: \phi=90^{\mathbf{o}}$


$7 \mathrm{GHz}: \phi=\mathbf{0}^{\mathbf{o}}$

$7 \mathrm{GHz}: \phi=\mathbf{9 0}^{\mathbf{o}}$


## Ray based hybrid method (MoM / UTD)

PO too expensive for very large (in terms of wavelengths) objects
$\Rightarrow$ FEKO offers the UTD (Uniform Theory of Diffraction)

| method | formulation | CPU-time | memory |
| :---: | :---: | :---: | :---: |
| MoM | current-based | $f^{4 \ldots 6}$ | $f^{4}$ |
| PO | current-based | $f^{2}$ | $f^{0}$ |
| UTD | ray-based | $f^{0}$ | $f^{0}$ |

## Ray based hybrid method (MoM / UTD)

UTD applied to polygonal plates or a cylinder



- direct ray
- reflected rays (also multiple)
- edge diffracted rays
- corner diffracted rays
- combinations of reflections and diffractions
- multiple diffractions
- creeping rays


## 25 by 25 Array on Shipboard

- Ship
- Length: 115 m
- Width: 14 m
- Height: 22 m
- Electrical size at 1.77 GHz
- Length: $679 \lambda$
- Width: $82 \lambda$
- Height: $159 \lambda$

MoM Unknowns: 32 millions

## 25 by 25 Array on Shipboard



## 25 by 25 Array on Shipboard


__ Ship board array
_— Array in free space

## Summary



## Summary

- Successful demonstration of antenna design, array analysis and placement of arrays on electrically large structures
- Use of various electromagnetic analysis techniques demonstrated
- It is possible to design antenna elements/array and carry out in-situ analysis of antennas/array on platforms using commercial EM analysis tools.

Simulations in this
presentation are done using


Comprehensive Electromagnetic Solutions



[^0]:    Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics ", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

