Advanced Computational Tools for Antenna Placement Studies

Dr. C. J. Reddy President EM Software & Systems (USA) Inc <u>www.emssusa.com</u>

Problem/Issue

Antenna and Antenna Array Analysis on various platforms

- Antenna Element Design
- Array Design
- In-situ analysis of the array integrated on platforms

Problem/Issue

EM Analysis tools are required for

- Design of antenna elements
- Array analysis
- In-situ performance analysis of antenna arrays mounted on aircraft, shipboard and ground platforms

Problem/Issue

adiation pattern and surface currents of a microstrip patch ar with corporate feed.

Characterisation of a horn-fed reflector antenna.

Studying VHF antenna placement on a naval platform.

Computational model of a car with integrated windscreen antenna.

Specification of cable paths for automotive cable coupling analysis.

Automotive EMC measurement installation with log periodic source.

Radiation hazard analysis for personal radios carried inside an automobile. The human phantoms are modelled with the FEM, while the antennas and bodywork are modelled with the MoM.

Computational Electromagnetics

- Numerical solution based on approximation of currents and/or fields
- Desirable properties of CEM methods:
 - Approximation may be reduced in order to increase accuracy, approaching the analytical result
 - Computational cost (CPU time & memory) must be as low as possible

Numerical Techniques

– Method of Moments

- Antenna Element Design
- Multilevel Fast Multipole Method (MLFMM)
 - Antenna/Array Design/Platform Analysis
- Hybrid MoM/Physical Optics (PO)
 - Platform Analysis
- Hybrid MoM/Uniform Theory of Diffraction (UTD)
 - Platform Analysis

EM Simulation Map: CEM Methods

Complexity of Materials

EM Simulation Map: CEM Methods

Complexity of Materials

Electrical Size

Method of Moments

Geometry

• Create CAD Model of the geometry

- Create surface mesh triangles
- Applying the equivalence principle electric or magnetic currents assumed to be unknowns
- RWG basis functions are used
- A set of linear equations are formed

g_n wire segments

Linear Basis Functions on wire segments

$\mathbf{Z} \mathbf{I} = \mathbf{V}$

- Z = NXN complex matrix
- I = Unknown current vector
- V = Known Excitation vector
- Solving this equation, unknown currents on each triangle is found

triangles RWG Basis Functions

on triangles

Method of Moments

Antenna Characteristics can be found from the currents calculated:

- Near- or Far-fields
- Input impedances
- S-parameters etc

Gopinath Gampala, Rohit Sammeta and C.J.Reddy, "A thin, low profile antenna using a novel high impedance surface", Microwave Journal, Technical Feature, July 2010.

Three Dual-Band Miniaturized Inverted F Antennas Integrated in a PDA for MIMO Applications

2006 IEEE APS Symposium Wireless LAN (WLAN) 2.45GHz and 5.2GHz (b) Prototype Figure 1: Simulation models for planar (a) and buckled (b) antennas **FEKO Model**

Stephan Schulteis, Christiane Kuhnert and Werner Wiesbeck, "Three Dual-Band Miniaturized Inverted F Antennas Integrated in a PDA for MIMO Applications", 2006 IEEE APS Symposium, Albuquerque, July 2006

(a)

(a)

(b)

Three Dual-Band Miniaturized Inverted F Antennas Integrated in a PDA for MIMO Applications

2006 IEEE APS Symposium

Stephan Schulteis, Christiane Kuhnert and Werner Wiesbeck, "Three Dual-Band Miniaturized Inverted F Antennas Integrated in a PDA for MIMO Applications", 2006 IEEE APS Symposium, Albuquerque, July 2006

Shirook Ali, Houssam Kanj, Dong Wang, Wen Geyi, "Design and Analysis of a Novel Pent-band Antenna for Handheld Applications", 2008 Applied Computational Electromagnetic Symposium, Niagara Falls, April 2008

Design and Analysis of a Novel Pent-band Antenna for Handheld Applications

Shirook Ali, Houssam Kanj, Dong Wang, Wen Geyi, "Design and Analysis of a Novel Pent-band Antenna for Handheld Applications", 2008 Applied Computational Electromagnetic Symposium, Niagara Falls, April 2008

TWO ARM ARCHIMEDEAN SPIRAL HELICAL ANTENNA WITH WRAP AROUND ABSORBER

Sandeep Palreddy, and Rudolf Cheung, "Two Arm Archimedean Spiral Helical Antenna With Wrap Around Absorber", 2009 Applied Computational Electromagnetic Symposium, Monterey Bay, March 2009

Accurate Simulation of Rotman Lens

Junwei Dong, Amir I Zaghloul, Rensheng Sun, C.J. Reddy and Steven Weiss, "Accurate Simulation of Rotman Lens using FEKO", 2009 Applied Computational Electromagnetic Symposium, Monterey Bay, March 2009

Antenna Placement on Electrically Platform

ATR-42 (Avions de Transport Regional)

Fig. 1. CAD model of ATR42 aircraft.

Antenna Placement on Electrically Platform

Fig. 2. Indication of the positions of VHF antennas.

 λ /8 mesh, 4,245 triangles

Calculations with MoM using Magnetic Symmetry MLFMM – no symmetry is used

Measurements with 1/12th scale model

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics ", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

Memory/CPU requirement for the MoM

Frequency	Electrical Size of Aircraft		Unknowns	Pook Momory	CPI L-time
	length	wingspan	CIIKIIOWIIS	I can wiemory	
200 MHz	9.7 λ	5.3 λ	5,874	542.6 MB	3.9 min
300 MHz	14.5 λ	8 λ	14,189	3.0 GB	29.0 min
450 MHz	21.75 λ	12 λ	29,389	13.0 GB	3.0 hours
600 MHz	29 λ	16 λ	44,627	30.0 GB	9.1 hours

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

Multilevel Fast Multipole Method (MLFMM)

MoM based on the solution of a system of linear equations

 $\mathbf{Z} \mathbf{I} = \mathbf{V} \qquad \qquad \mathbf{I} = \mathbf{Z}^{-1} \mathbf{V}$

Impedance matrix \mathbf{Z} describes interaction of n.th element with m.th element

 \rightarrow LU-decomposition requires $O(N^3)$ operations and $O(N^2)$ memory

Resource Requirement

MoM Solution Acceleration

Adaptive Cross-Approximation:

- Effective for:
 - Low-frequency problems (sub-wavelength geometric detail)
 - Planar Greens function problems
- Large savings in memory and runtime over traditional implementation

Hardware Acceleration:

- Parallelization
 - Multi-core
 - Multi-CPU
 - Cluster
- Graphical Processing Unit (GPU)
 - NVIDIA CUDA enabled

ACA hierarchical matrix

Multilevel Fast Multipole Method (MLFMM)

- Divide space into boxes
- Aggregation (A)
- Translation (T)
- Disaggregation (D)

www.feko.info

Observer region

Resource Requirement

Memory requirement for the MLFMM

→ Confirmed by examples

Possible with MLFMM

Asymptotic predictions of memory usage for the MoM with and without MLFMM.

N	МоМ	MLFMM	Application
100 000	75 GByte	1 GByte	 Military aircraft at 690 MHz Ship (115 m x 14 m) at 107 MHz Reflector antenna with aperture size 19λ
200 000	300 GByte	2 GByte	 Military aircraft at 960 MHz Ship (115 m x 14 m) at 150 MHz Reflector antenna with aperture size 27λ
400 000	1.2 TByte	4.5 GByte	 Military aircraft at 1.37 GHz Ship (115 m x 14 m) at 214 MHz Reflector antenna with aperture size 38λ
1 000 000	7.5 TByte	12 GByte	 Military aircraft at 2.2 GHz Ship (115 m x 14 m) at 340 MHz Reflector antenna with aperture size 60λ

Comparison between MoM and MLFMM at 600 MHz

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

Memory/CPU requirement for the MLFMM

Frequency	Electrical Size of Aircraft		Unknowns	Peak Memory	CPI I-time
	length	wingspan	Cirkitowits		
600 MHz	29 λ	16 λ	89,866	1.3 GB	20.0 min
1 GHz	48.3 λ	26.7 λ	407,648	3.7 GB	1.1 hours
2 GHz	96.6 λ	53.3 λ	1,320,430	10.5 GB	3 hours
3 GHz	145 λ	80 λ	2,736,834	21.4 GB	7 hours

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

PEC Surface

$$\mathbf{J}(\mathbf{r}) = \hat{n} \times \mathbf{H}(\mathbf{r}) = \hat{n} \times \left[\mathbf{H}^{i}(\mathbf{r}) + \mathbf{H}^{r}(\mathbf{r})\right]$$

$$\mathbf{J}(\mathbf{r}) = 2\hat{n} \times \mathbf{H}^{i}(\mathbf{r})$$

Hybrid MoM/Physical Optics (PO) Technique

Two types of coupling:

- J^{MoM} radiates H causing asymptotic currents
- *J^{asym}* radiates E which must be considered in the MoM integral equation

Validation of FEKO for Electrically Large Problem

M. V. T. Heckler* and A. Dreher, Analysis of Monopoles Installed on Airframes, 2005 IEEE APS Symposium, Washington DC, July 2005

Fig. 8. Directivity in the $\phi = 0^{\circ}$.

Fig. 9. Directivity in the $\phi = 90^{\circ}$.

Comparison between MLFMM and MoM/PO at 3 GHz

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

Memory/CPU requirement for the MoM/PO

Frequency	Electrical Size of Aircraft		Unknowns	Pook Momory	CPI L-time
	length	wingspan	CIIKIIOWIIS	i cuis meniory	
3 GHz	145 λ	80 λ	808,336	570.0 MB	8.0 min
8 GHz	387 λ	213 λ	5,075,060	4.0 GB	1.4 hours
15 GHz	725 λ	400 λ	17,271,199	16.0 GB	8.9 hours
20 GHz	967 λ	533 λ	30,437,010	30.9 GB	20.1 hours

Rensheng Sun and C.J.Reddy, "Benchmark Study on Computational Resources for Numerical Methods in Electromagnetics", 2008 IEEE AP-S USNC/URSI, San Diego, July 2009

Summary of MoM, MLFMM, and MoM/PO

	C	Electrical Size		# of	Peak	
	frequency	length	wingspan	Unknowns	Memory	CPU-time
МаМ	200 MHz	9.7 λ	5.3 λ	5,874	542.6 MB	3.9 min
symmetry	300 MHz	14.5 λ	8 λ	14,189	3.0 GB	29.0 min
(mesh size)	450 MHz	21.75 λ	12 λ	29,389	13.0 GB	3.0 hours
	600 MHz	29 λ	16 λ	44,627	30.0 GB	9.1 hours
	600 MHz	29 λ	16 λ	89,866	1.3 GB	20.0 min
MLFMM	1 GHz	48.3 λ	26.7 λ	407,648	3.7 GB	1.1 hours
(Inesh size) $\lambda/8$	2 GHz	96.6 λ	53.3 λ	1,320,430	10.5 GB	3.0 hours
	3 GHz	145 λ	80 λ	2,736,834	21.4 GB	7.0 hours
MoM/PO symmetry (mesh size $\lambda/6$)	3 GHz	145 λ	80 λ	808,336	570.0 MB	8.0 min
	8 GHz	387 λ	213 λ	5,075,060	4.0 GB	1.4 hours
	15 GHz	725 λ	400 λ	17,271,199	16.0 GB	8.9 hours
	20 GHz	967 λ	533 λ	30,437,010	30.9 GB	20.1 hours

2-Node Cluster

Intel Xeon E5-2650 2.0GHz 8-core 20MB cache Each Node: 2 CPUs (16 cores), 256GB RAM

Total: 4 CPUs (<u>32 cores</u>), <u>512 GB RAM</u> Infiband Interconnect

Resource Requirements

Method	Frequency	Triangles	Unknowns	Memory	Time
MOM	950MHz	162 524	121 537	222.1 GB	4.7 hr
MLFMM	950MHz	162 524	243 726	11.6 GB	0.1 hr
MLFMM	7.00 GHz	8 193 402	12 289 643	220.8 GB	2.6 hr
PO	7.00 GHz	5 119 950	3 838 847	36.9 GB	0.5 hr

Method	Frequency	Electrical Size		Unknowns	Memory	Time
ΡΟ	3 GHz	145 λ	80 λ	808 336	.57 GB	0.13 hr
ΡΟ	8 GHz	387 λ	213 λ	5 075 060	4.0 GB	1.40 hr
ΡΟ	15 GHz	725 λ	400 λ	17 271 199	16.0 GB	8.90 hr
ΡΟ	20 GHz	967 λ	533 λ	30 437 010	31.0 GB	20.10 hr
ΡΟ	45 GHz	2175 λ	1200 λ	108 435 565	128.0 GB	93.50 hr
ΡΟ	60 GHz	2901 λ	1599 λ	191 095 846	248.0 GB	210.00 hr

Currents

950 MHz

7 GHz

Ray based hybrid method (MoM / UTD)

Ray based hybrid method (MoM / UTD)

UTD applied to polygonal plates or a cylinder

direct rays reflected rays edge diffracted rays

observation

Consideration of

- direct ray
- reflected rays (also multiple)
- edge diffracted rays
- corner diffracted rays
- combinations of reflections and diffractions
- multiple diffractions
- creeping rays

25 by 25 Array on Shipboard

- Ship
 - Length: 115 m
 - Width: 14 m
 - Height: 22 m
- Electrical size at 1.77 GHz
 - Length: 679 λ
 - Width: 82 λ
 - Height: 159 λ

MoM Unknowns: 32 millions

25 by 25 Array on Shipboard

25 by 25 Array on Shipboard

Summary

Band Width/Complexity Materials

www.feko.info

Electrical Size

Summary

- Successful demonstration of antenna design, array analysis and placement of arrays on electrically large structures
- Use of various electromagnetic analysis techniques demonstrated
- It is possible to design antenna elements/array and carry out in-situ analysis of antennas/array on platforms using commercial EM analysis tools.

Simulations in this presentation are done using

