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Gallium Nitride Power
MMICs — Fact and Fiction



Introduction

o Gallium Nitride has many attractive characteristics
- High operating voltage capability (Vgp)
- High current capability (l,,ay )
- Good microwave performance (Gy,ay » fr, fuax)
- Good low noise performance (NF,,)

- High thermal conductivity Silicon Carbide substrate

o Should be ideal for microwave power applications!
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Introduction

o Use of GaN based technology is rapidly growing
- Military (Radar, EW, Communications)
- Infrastructure (Basestation, Weather Radar, Satcom)

- Commercial (CATV, Test equipment)

o Numerous circuit functions have been demonstrated
- Power amplifiers
- Low noise amplifiers

- RF control components
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Introduction

o GaN MMIC design however Is not without iIssues

o Some are obvious
- High voltage / high current
- Thermal
o Some are less so
- Wideband power amplifier designs
- Power combining

- User interface / driver circuitry
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High Output Impedance = More Bandwidth?

o High voltage operation = higher output impedance
- Reduced transformation ratios
- Lower loss, wider band matching networks

- Less complex combining networks or more power

o All true! Sometimes .......
- Narrow to moderate bandwidth designs do benefit

- Low frequency wideband designs also benefit
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High Output Impedance = More Bandwidth?

o This not always true for reactively matched wideband
microwave frequency designs

o A restriction comes into play: Bode-Fano Limit [1]
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High Output Impedance = More Bandwidth?

> R,C, Blas Dependence for a 0.25um GaN FET

18 GHz Load Pull, 100 mA/mm, 8x50um, 20um Pitch
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High Output Impedance = More Bandwidth?

o S0 why does this matter ?
o Bandwidth limit for a 6V GaAs PHEMT is > 30GHz

o The efficiency tuned load target for a 0.25um GaN
HEMT at 18GHz and V=35V is....

Rp =120 O-mm  C, = 0.3 pF/mm

o For 20dB return loss bandwidth is < 6GHz !

o This assumes an infinite order matching network!!
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Dealing with Bode-Fano

o Bandwidth increases if C; Is reduced
o Fundamental idea behind the distributed amplifier

o Uniform distributed amplifier — Not a good PA
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Dealing with Bode-Fano

o Power performance is improved with a non-uniform
distributed power amplifier topology (NDPA) [2]

- Output termination R, ; removed

- Output line Z, , and gate capacitors C, , are varied
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Dealing with Bode-Fano

o S0 how are the drain line impedances varied?

o Simplified low frequency nth FET output model

n-1 7

_Z| 1

o Qi +

i=1 Rp,nj Vv § Zo,n
IQn

o Summing the currents at the drain node

n-1
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=1 ZO,n
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Dealing with Bode-Fano

> Solve for R , and assume uniform drive and loading
such that the current scales with periphery

Y N o
Ry, = — —Zo{1+ | j ZW

Q, =1 Q i=1

> Normalize R,=R, W, and solve for Z,

R, (€2-mm)

Z:];WQi

Ly, =

n o
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Dealing with Bode-Fano

o The drain line impedance for the Nth FET will be,

R (€2-mm R (€QQ-mm N
ZO,N — RL — IO(N ) or p( ) = ZWQj
D W, R ) o
=1

o This condition fixes the total periphery and therefore
the expected output power capability of the amplifier

> Increase periphery (power) by increasing R, (V)
or decreasing the amplifier load impedance R,
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Dealing with Bode-Fano

o Consider the following example for R, =50Q
- N =10 FET cells 600
+ Rp =120 Q2-mm

E Q1-Q10 = 240um
A Q1=600um, Q2-Q10=200um

Ul
o
o
|

=Y
o
o

Maximum
Realizable Z, on
100um Thick SiC

200 A
A% -
i A

100

- Total Periphery: 2.4mm
- Power: 7-12W (3-5W/mm)

> Very high Z,

Drain Line Impedance (Ohm)
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o
o
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0 Q1 sjze sets max ZO [3] Transistor Cell

o The first transistors are poorly loaded!
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Dealing with Bode-Fano

o Reduce load impedance — Requires transformer

o Trade bandwidth for output power and realizability

o Power @ 3W/mm 1000 _ .
- Uniform Cell Size
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o . ==+ [Vlax Realizable Zo for 100um SiC
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Transistor Cell
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Dealing with Bode-Fano

> For a 4:1 impedance transformation (R,=12.5Q) a
useful circuit is Ruthroff connected coupled lines [4]

o GaN on 100um thick SIC realizations are capable of
about 4:1 bandwidth [5]
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Dealing with Bode-Fano

o Bandwidth can be traded for transformation ratio
o Trifilar transformer - up to 2.25:1 transformation

o Trifilar coupled lines on GaN ~ 10:1 bandwidth [6,7]

2_ZOGHZ T”fllar Higher Lower
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Dealing with Bode-Fano

o Transformer based NDPA MMIC examples

18-40GHz NDPA with a Ruthroff 1-8GHz NDPA with a Trifilar
connected output transformer connected output transformer
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Why Is My Part So Hot?

o Most GaN MMIC processes use SIC as a substrate
o Thermal conductivity of SIC exceeds that of copper
o Heat Is transferred effectively to the back of the die

o The power density of GaN HEMTs 3-5X higher than
a GaAs PHEMT of equal periphery

o The power added efficiency Is however similar

o The problem: 3-5X more heat flux to be removed
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Why Is My Part So Hot?

o Thermal management burden is placed on the user

o Fal

o TOC

ure to remove heat = Higher MMIC base temp

ay designers must practice thermal management

- Increase gate pitch = Reduced RF performance

- Increase cell separation = Die size and stability

- Individual source vias (ISVs) = Die size

- Tune for Max PAE = Reduced Power or linearity
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Why Is My Part So Hot?

o An example of staggering the FET cells
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Why i1s My Part So Hot?

o Staggering the FET cells
o Using ISV FET cells
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Why Is My Part So Hot?

o An Interesting example - power was reported power
to be 1dB low for the 20mm FET die with loadpull
prematch

o An unexpected temperature distribution was noted
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Why Is My Part So Hot?

o A detalled simulation revealed non-uniform drive and
loading across the prematch connection ports

o Integrating over the 16 unit FET cells and normalizing
to the maximum
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The Devil Is In the Power Combining

o The odd temperature distribution for the 20mm FET
IS caused by asymmetries in the combining network

o Some sources of combiner asymmetry
- Mutual inductance between parallel bond wires

- Mode formation due to curves and bends
- Coupling between microstrip lines
- Sharing source vias between adjacent cells

- Nonuniform temp. from adjacent cell heating
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The Devil Is In the Power Combining

o 3-stage 16-way combined GaAs Ka-band PA MMIC
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The Devil Is In the Power Combining

o Symmetric 2-way combiner — Power tuned I's & ',

- EM Simulated Combiners

=
N D| /)
- Pwr Tune FL and FS Ls j‘ = l— o

Output Power: 31.7dBm
FET Load Impedances

+ Qp Power: 3.82 W/mm T e
30 GHz ™

£ Xy, N
« Qo Power: 3.83 W/mm / ng 69. egw\
30 GHz
O Qtop Load g 63,97 Deg
x QBot Load
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The Devil Is In the Power Combining

o Curved output line for connection to adjacent pair

i

- EM Simulated Combiners
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The Devil Is In the Power Combining

o Curved input and output lines

- EM Simulated Combiners e

« 4x50um 0.15um GaN HEMT
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The Devil Is In the Power Combining

o The output curve causes a minor degradation
o The Input curve causes significant degradation
- Current imbalance due to mode formation from curve

- The input current imbalance is amplified by the FETs
o Fortunately this effect can be compensated for

- Addition of odd mode suppression resistors or straps

- Shifting the location of the tee junction
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The Devil Is In the Power Combining

o Compensated curved input and output lines

- Add Odd Mode Resistors

Offset Tee Junctions

Pwr Tune I', and I'g

Output Power: 31.7dBm
* Qqop POwer: 3.86 W/mm
« Qpot PoOwer: 3.78 W/mm

/

/
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The Devil Is In the Power Combining

o Power combining two or more smaller amplifiers is
another common approach

o MMIC Lange couplers work very well

Lange Coupler Data - 2 Couplers Back to Back

0 0
0.2
0.4 -7
m 06 —Back to Back IL (L) o
~— ~
w -08 14 =
8 B
— 1 3
5 —Back to Back RL (R) c
e 12 21 3
] i
£ 14 r
1.6 -28
A
2 -35

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Frequency (GHz)
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The Devil Is In the Power Combining

o Ka-band GaN MMIC example — watch out for the
output termination resistor!!! [8]

High Power 50Q

|--- L

r.' N Termination (2.5W)
In-Fixture, CW, Room, Vd=20V, Ig=560mA
45
Mi 40

w
u

=-B= Power at Pin=+22dBm

1 3
1l
N w
nn o
%Power Added Efficiency

20
=o~ PAE at Pin=+22dBm
15
28 29 30 31 32
Frequency (GHz)
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The Devil Is In the Power Combining

o Recent results using traveling wave like combiners
are very encouraging!! [9]
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Nice RF Switch But High Control Voltage!

o GaN technology is well suited to RF control circuits
- High breakdown voltage (Vgp)
- High current capability (I,,xy)

o High control voltage Is required, typically -20V to -40V
o Users struggle to build high speed driver circuits
o Lower control voltage range is often requested

o How does the circuit maintain power handling?
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Nice RF Switch But High Control Voltage!

o Typical shunt switch FET circuit (V; = -20V )

o Biased through high value gate resistor

> To Increase power handling make V. more negative

RF Signal Line 0
® °
C | = 15 -
gd\N | < 15
R g
g g 30 -
W :
T g-%-
Ve <_> o/ v
£ .60 -
N P~ I
'75 ) ) ) )
v 0 2 4 6 8 10
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Nice RF Switch But High Control Voltage!

o A common approach is to stack “N” FET cells
- Up to N 2 power handling increase

- Up to N 2 increase in FET area ® ®

- More parasitic capacitance AN—

- Some foundries integrate 3  ye —
gate fingers into a single
channel = “Triple Gate FET”
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Nice RF Switch But High Control Voltage!

o Consider the diode clamp circuit shown below [10]

The circuit shown in Fig. 3.17(a) is known as a clamp because its function is to
“‘clamp’’ or fix one edge of a periodic waveform (in this case the positive peak) to
some reference voltage. The time constant RC must be long compared to the period

\;](F = \'V;.__‘L__ _
IR « © ™

» (
L— 3 v R

/ 7 /—f‘ @\ g 5, i
/

@ Control Vo FETV, ®

FET Cyq

RF Signal

> Note the comment regarding the RC time constant,
the clamping action will not occur at low frequency
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Nice RF Switch But High Control Voltage!

o Add a small gate diode in para

o Schematically equivalent to a ©

lel with R,

lode clamp circuit

> Now control voltage V. can be made less negative!

RF Signal Line

0

“®"

ngz\(’ |
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Nice RF Switch But High Control Voltage!

o Simulations with & without the parallel diode

Shunt FET, Vc=-20V, 1GHz, 3GHz and 5GHz

0.0

)

= 04 -

m N

S > 5X Higher P 545 !!

Tg -0.8 -

20

)

gb -1.2 | =-=- Resistor Bias Circuit

©

- — Diode Bias Circuit 2
-1.6 W

20 25 30 35 40 45 50
Input Power (dBm)
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Nice RF Switch But High Control Voltage!

o A 40W GaN switch design was fitted with the diode
circuit & processed along side the original

o 0.25um GaN Switch FETs

- Centered Gate

- Single Field Plate
- 100um SiC

* lyax = 0.95A/mm
- Vp =-3.1V -
. Vg > 55V in S

Original SPDT Switch Retrofitted SPDT Switch
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Nice RF Switch But High Control Voltage!

> Measured CW P, ,4z cOmpression point [11,12]
- Frequency response of clamp is evident

- 10X increase in P, ,4z above 2.5GHz for -10V V.

Original SPDT MMIC Design: CW, Room Parallel Diode SPDT MMIC Design: CW, Room
47 a7
—Vc=-40V — —Vc=-40V
45 ’h 45
E 43 —\/c=-30V —g 43 —\/c=-30V
= S
S a Ve=20v = 41 Vc=-20V
2 I 2
.S 39 -_ — Vee1sy o 39 —Vc=-15V
= 5
‘El ¥ - — —Vc=-12V E’ 37 —Vc=-12V
35 — 35
—Vc=-10V —Vc=-10V
33 33
05 1.0 15 20 25 3.0 35 40 45 05 1.0 15 20 25 3.0 35 40 45
Frequency (GHz) Frequency (GHz)
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Concluding Remarks

o GaN MMIC tec

nnology Is a real game changer

o The enabling c

naracteristics do come with issues

o Hopefully this talk has illustrated some of the
challenges associated with GaN MMIC design

Thank you for the opportunity to
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