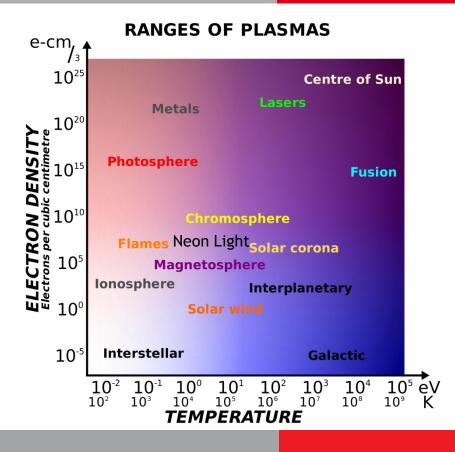
Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range

Dr.-Ing. Frank H. Scharf CST of America

CST

What is a plasma?

What is a plasma?


- Often referred to as "The fourth state of matter"
 - Solid Liquid Gas Plasma
- Consists of:
 - Neutrals
 - Ions and electrons
- Can be created by:
 - Superheating a gas (thermal plasma)
 - Using EM fields to heat the charged particles (non-thermal plasma)

What is a plasma?

- Collective behavior
 - Due to long-range Coulomb forces
- Quasi-Neutral
 - Electrostatic forces will quickly expel any charge surplus

Plasma Outside of the Laboratory

"99.999% of the visible universe is plasma. We just happen to live in the remaining 0.001%"

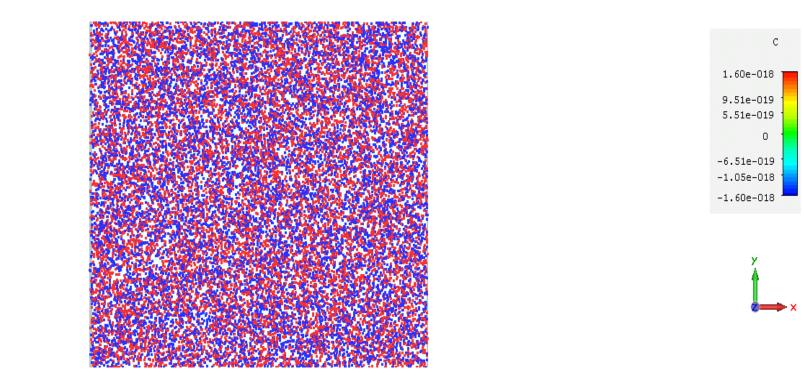
What makes it so interesting?

Light Generation

- De-Excitation (Electron transitions, e.g. Rydberg/Lyman)
- Recombination

Plasma Frequency

•
$$\omega_{pe} = \sqrt{\frac{n_e e^2}{m_e \varepsilon_0}}$$


- Waves below this frequency are reflected. Waves above this frequency can pass through the plasma
- Space vehicle re-entry

Plasma Sheath

- Sheath formation
 - Assume quasi-neutral plasma in touch with metal
 - More electrons than ions will hit wall due to mobility
 - Negative charge builds up on wall
 - Ions near wall will be accelerated towards wall
 - Result is a sheath of electron depletion between plasma bulk and metal wall

Plasma Sheath Formation

Plottype Charge Sample (2/800) Time 1.001e-002 ns Particles 199999

Plasma Sheath: Applications

Plasma etching

Ion sources

Why simulate it?

Why Simulation?

- Difficult to access/reproduce
 - Space plasmas: Very low densities, large plasma dimensions
 - Solar plasmas: Extremely high densities and temperatures
- Difficult to measure
 - Probes are intrusive and can distort the plasma
 - (Relatively) short time scales
- Spectroscopy?
 - Often only integrated values, not spatially resolved
 - Windows in reactor are often undesirable

Why Simulation?

- Simulation yields
 - Spatially resolved results
 - Temporally resolved results
 - Without disturbing the plasma
- Reproducibility
 - Limitation: Monte-Carlo, degenerated systems

Basic Physics behind Simulation

Maxwell's equation for EM fields

$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Particle movement according to Newton

$$\vec{F} = m\vec{a}$$

Basic Physics behind Simulation

Collisions:

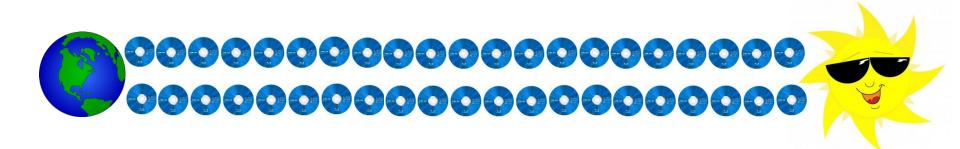
- Elastic collisions
- Inelastic collisions
 - Ionization/Recombination
 - Excitation/De-Excitation
 - Disassociation
 - Molecular chemistry

•

G. Roberson et al., Global model simulations of low-pressure oxygen discharges, Braz. J. Phys. vol.37, http://dx.doi.org/10.1590/S0103-97332007000300019

Reactions	Threshold energy (eV)	Rate Coefficients (m ³ s ⁻¹)
1. $e^- + O_2 \rightarrow e^- + O_2$		$k_1 = 4.70 \times 10^{-14} \text{Te}^{0.5}$
2. $e^+ O_2 \rightarrow e^- + O_2(r)$	0.02	$k_2 = 1.87 \times 10^{-17} exp(-2.9055/Te)$
3. $e^- + O_2 \rightarrow e^- + O_2(v=1)$	0.19	$k_3 = 2.80 \times 10^{-15} exp(-3.72/Te)$
4. $e^- + O_2 \rightarrow e^- + O_2(v=2)$	0.38	$k_4 = 1.28 \times 10^{-15} exp(-3.67/Te)$
5. $e^- + O_2 \rightarrow e^- + O_2(v=3)$	0.57	$k_5 = 5.00 \times 10^{-16} exp(-3.6/Te)$
6. $e^- + O_2 \rightarrow e^- + O_2(v=3)$	0.75	$k_6 = 2.00 \times 10^{-16} exp(-3.5/Te)$
7.e ⁻ + O ₂ \rightarrow e ⁻ + O ₂ (a ¹ Δ g)	0.98	$k_7 = 1.37 \times 10^{-15} exp(-2.14/Te)$
9. $e^- + O_2 \rightarrow O(^{3}P) + O^-$	4.2	$k_9 = 8.80 \times 10^{-17} exp(-4.4/Te)$
11. $e^- + O_2 \rightarrow e^- + O(^3P) + O(^3P)$	6.0	$k_{11} = 6.86 \times 10^{-15} exp(-6.29/Te)$
12. $e^- + O_2 \rightarrow e^- + O({}^3P) + O({}^1D)$	8.4	$k_{12} = 1.80 \times 10^{-13} exp(-18.33/Te)$
13. $e^- + O_2 \rightarrow e^- + O(^1D) + O(^1D)$	9.97	$k_{13} = 1.44 \times 10^{-16} exp(-17.25/Te)$
14. $e^- + O_2 \rightarrow e^- + O_2^+ + e^-$	12.06	$k_{14} = 2.34 \times 10^{-15} \text{Te}^{1.03} \exp(-12.29/\text{Te})$
15. $e^- + O_2^+ \rightarrow O({}^{3}P) + O({}^{3}P)$	1.0×10 ⁻²	$k_{15} = 2.20 \times 10^{-14} \text{Te}^{-0.5}$
16. $e^- + O^- \rightarrow e^- + O(^{3}P) + e^-$	1.465	$k_{16} = 5.47 \times 10^{-14} \text{Te}^{0.324} \exp(-2.98/\text{Te})$
17. $O + O_2^+ \rightarrow O(^{3}P) + O_2$		$k_{17}=2.6\times10^{-14}(300/TgK)^{0.44}$
18. $O^- + O_2 \rightarrow O^- + O_2$		k ₁₈ =2.0×10 ⁻¹⁶ (300/TgK) ^{0.5}
$19 O_2^+ + O_2^- \rightarrow O_2 + O_2^+$		k ₁₉ =3.95×10 ⁻¹⁶ (300/TgK) ^{0.5}
20. $O(^{3}P) + O_{2} \rightarrow O(^{3}P) + O_{2}$		k ₂₀ =2×10 ⁻¹⁶ (300/TgK) ^{0.5}
23. $O^- + O(^{3}P) \rightarrow e^- + O_2$		k ₂₃ =1.6×10 ⁻¹⁶ (300/TgK) ^{0.5}
	5.023	$k_{24} = 6.96 \times 10^{-15} exp(-5.31/Te)$
25. $e^- + O_2 (a^1 \Delta g) \rightarrow e^- + O({}^{3}P) + O({}^{1}D)$	7.423	$k_{25} = 3.49 \times 10^{-14} \exp(-4.94/\text{Te})$
26. $e^- + O_2(a^1\Delta g) \rightarrow O^- + O(^3P)$	3.64	$k_{26} = 4.19 \times 10^{-15} \text{Te}^{-1.376} \exp(-5.19/\text{T})$
27. $e^- + O_2 + \rightarrow O(^{3}P) + O(^{1}D)$	3.6	$k_{27} = 2.20 \times 10^{-14} \text{Te}^{-0.5}$
30. $e^- + O \rightarrow 2e^- + O^+$	13.06	$k_{30}=9.00\times10^{-15}$ Te ^{0.7} exp(-13.6/Te)
31. $e^- + O_2 \rightarrow e^- + O^+ + O^-$	17.0	$k_{31}=7.10\times10^{-17}$ Te ^{0.5} exp(-17/Te)
32. $e^- + O_2 \rightarrow 2e^- + O^+ + O(^3P)$	16.81	k32=1.88×10 ⁻¹⁶ Te ^{1.699} exp(-16.81/Te
33. $e^- + O(^1D) \rightarrow 2e^- + O^+$	11.6	$k_{33} = 9.00 \times 10^{-15} \text{Te}^{0.7} \exp(-11.6/\text{Te})$
34. $O^- + O^+ \rightarrow 2O(^{3}P)$		$k_{34} = 4.0 \times 10^{-14} (300/TgK)^{0.43}$
$35. \text{ O}^+ + \text{O}_2 \longrightarrow \text{O}(^3\text{P}) + \text{O}_2^+$		k35=2.0×10 ⁻¹⁷ (300/TgK) ^{0.5}
37. $O(^{1}D) + O_{2} \rightarrow O(^{3}P) + O_{2}$		$k_{37}=2.56\times10^{-17}\exp(67/TgK)$
38. $O(^{1}D) + O(^{3}P) \rightarrow 2O(^{3}P)$		k ₃₈ = 8.0×10 ⁻¹⁸
39. $O_2^+ + O(^1D) \rightarrow O_2(a^1\Delta g) + O(^3P)$		$k_{39} = 1.0 \times 10^{-18}$

Kinetic Models

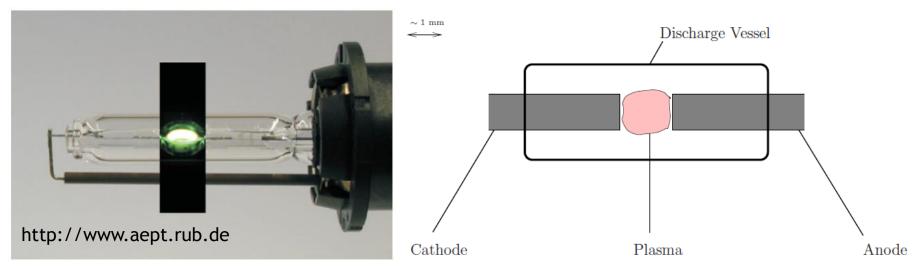

Approach 1: Kinetic Modeling

- Full Physics (Maxwell + Newton + collisions)
- All results of interest can be extracted
- Applicable to all plasmas
- Three options:
 - Direct: N particles with all states, external forces
 - Particle distribution functions: Solving the Boltzmann equation
 - Particle-In-Cell (PIC)

Explicit Modeling of Particles

Maxwell + Newton + collisions for each particle

- Problem:
 - 1 mol of gas at 1 point in time, 6 unknowns per particle
 - About 13.4 YB (=1.34E13 TB)

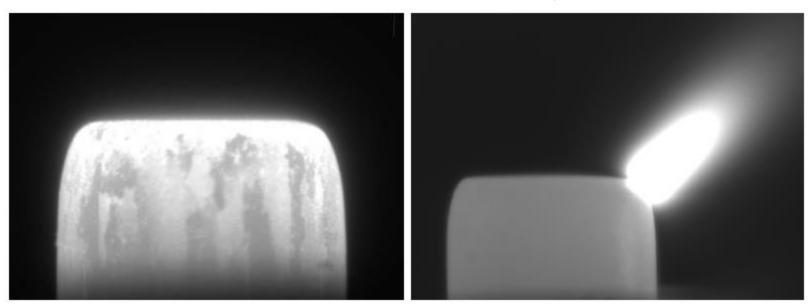

Solving the Boltzmann Equation

- Instead of considering every particle as an individual, define a distribution function f(x, v, t) for each species
- The Boltzmann equation describes how the distribution function evolves over time:

$$\frac{\mathrm{d}f(\vec{x},\vec{v},t)}{\mathrm{d}t} = f_c$$

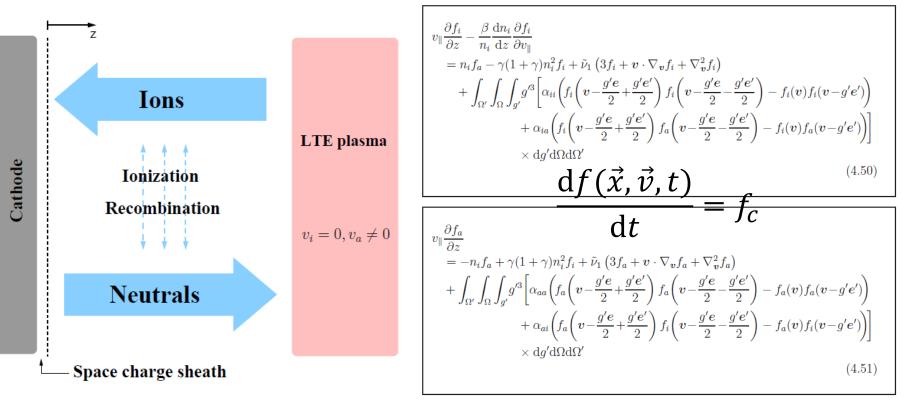
Simple enough - or is it? Let's apply it to a simple case!

The Near-Cathode Region in HIDs

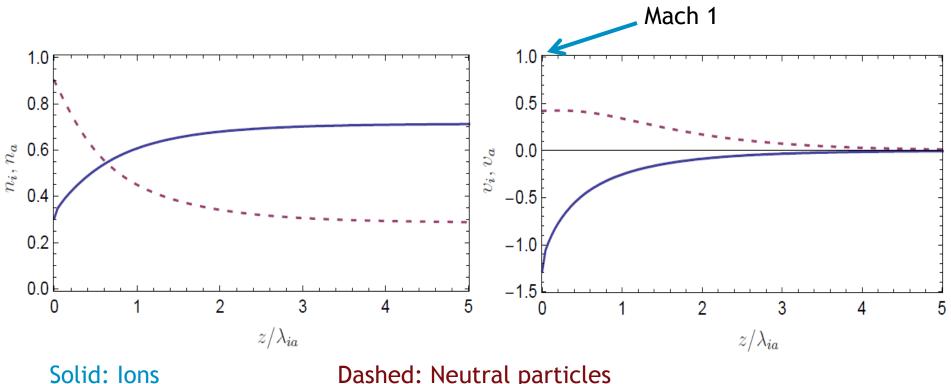


D-Lamp for automotive headlights

Different Spot Attachments

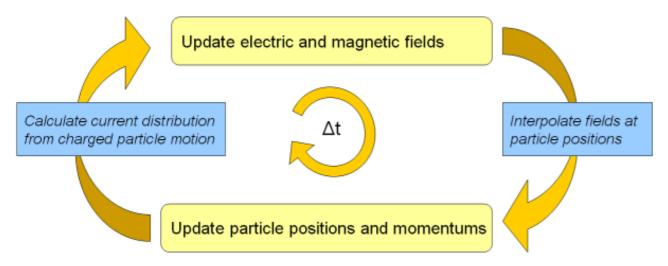

Diffuse Mode

Spot Mode


S. Lichtenberg et al., J. Phys. D: Appl. Phys. 35 (2002) 1648-1656

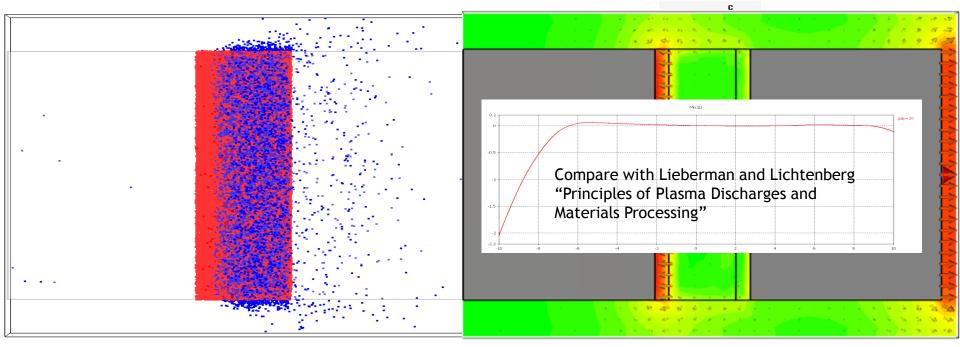
Solving the Boltzmann Equation

F H Scharf, Fluid Dynamic and Kinetic Modeling of the Near-Cathode Region in Thermal Plasmas, Logos 2009

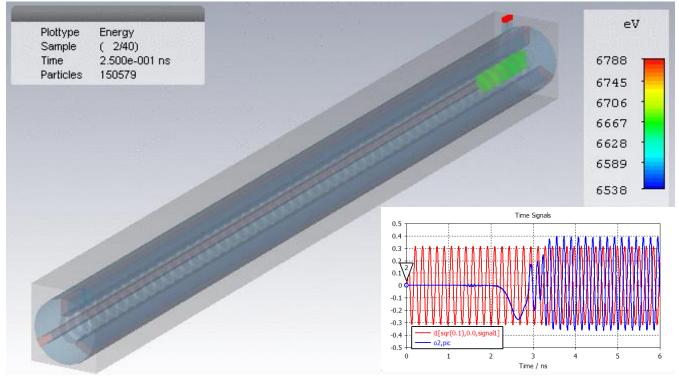

Solve for Density and Velocity

Dashed: Neutral particles

Particle-In-Cell


Use a computer to create an ensemble of particles

- If the number of particles in the ensemble is large enough, the behavior or the ensemble will approach the real behavior
- Collisions are typically considered stochastically (PIC-MC)

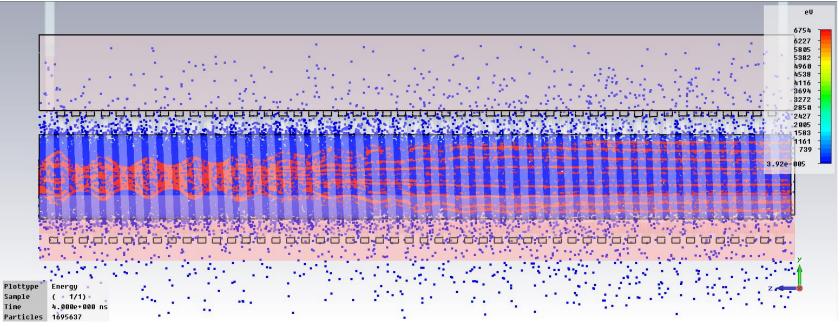

RF Sheath of Argon Plasma

350,000 macro particles (ratio 10:1)



Traveling Wave Tube (TWT)

Traveling Wave Tube (TWT) devices can be used as amplifiers:



Traveling Wave Tube (TWT)

Example: Pasotron

A plasma can be used to focus the electron beam:

Red: High energy electrons in beam

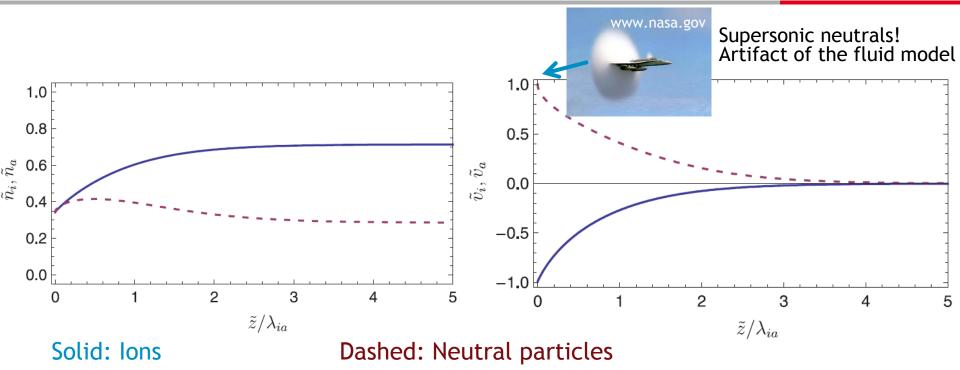
Blue: Low energy electrons in plasma

Fluid Dynamic Models

Approach 2: Fluid dynamic model

- Each species is treated as a fluid
 - Implies strong interaction between particles of same kind
- Magneto Hydro Dynamics (MHD): Maxwell's equations + Navier-Stokes

Collisions treated by collision coefficients


Approach 2: Fluid dynamic model

- Good for high densities
- Breaks down for low densities, particularly in the sheath region
- Knudsen number: $Kn = \lambda/L$
- Fluid approximation is good if Kn << 1</p>
- Surprisingly robust, due to conservation of mass, momentum, energy

Solving the Fluid Dynamic Equations

7

Solve for Density and Velocity

Global Models

Approach 3: Global model

- Plasma treated as stationary medium with a given permittivity
- Stationary ions, mobile electrons

Cold plasma approximation/Drude model

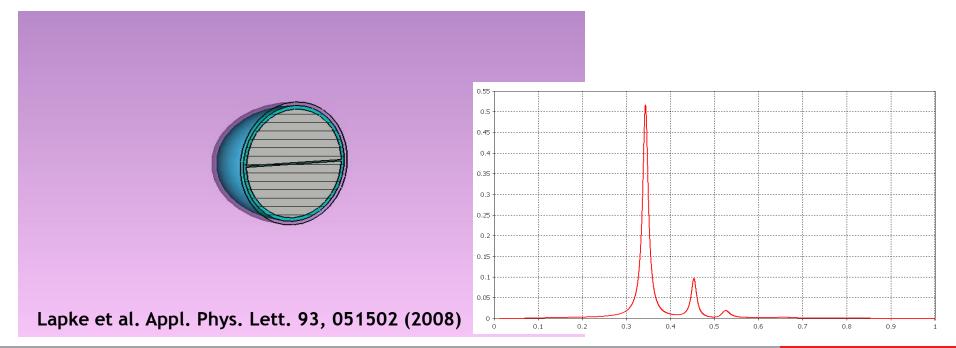
$$\varepsilon_{\text{eff}} = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2 + v^2} \right) - i \frac{\varepsilon_0 v \omega_p^2}{\omega(\omega^2 + v^2)}$$

where ω_p is the local plasma frequency, which depends
on the electron density n_e :

$$\omega_{\rm p}^2 = n_{\rm e} \, \frac{e^2}{m_{\rm e} \varepsilon_0}$$

Approach 3: Global model

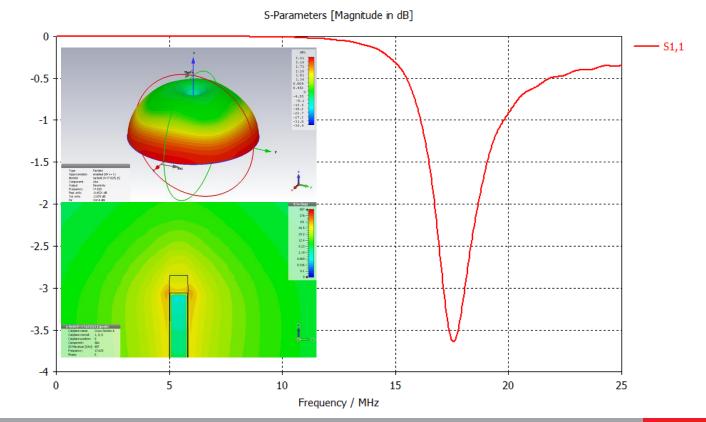
Requires ab initio knowledge about plasma


 Can only describe the effect of the plasma on EM, not the behavior of the plasma itself.

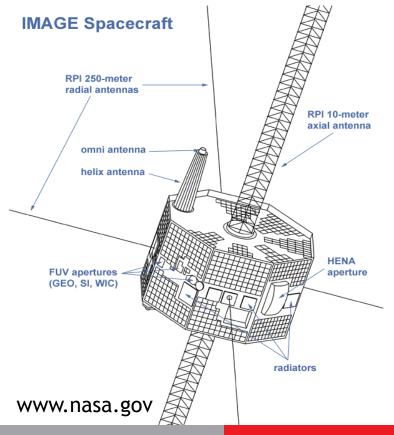
Maxwell's equations only

Fast!

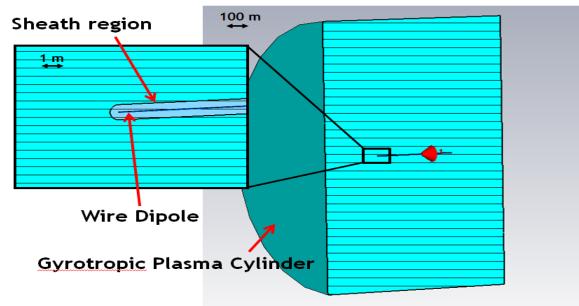
Multipole Resonance Probe (MPRP)


- The MPRP is a non-intrusive measuring device
- Plasma parameters can be determined from power absorption spectrum

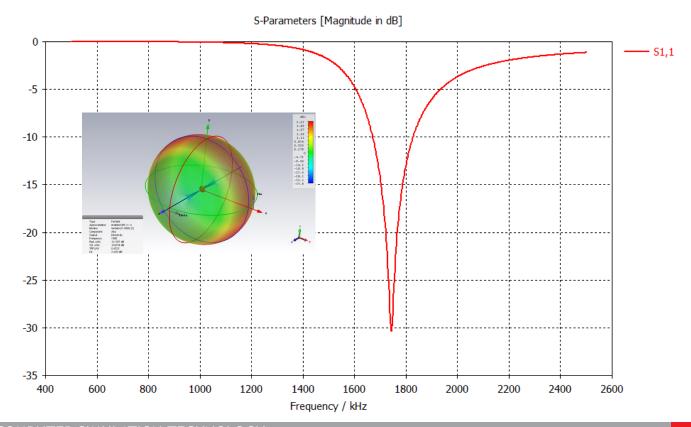
Plasma Antenna


- Plasma is a conducting medium and can act as an antenna
- Can be quickly deployed or disabled
- Example: Neon tube monopole

Neon Tube Monopole

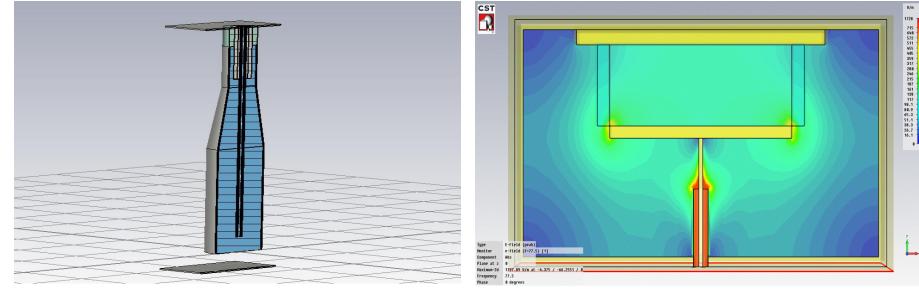

NASA IMAGE RPI in Magnetosphere

- Satellite in elliptical orbit
- Plasma density depends on altidude
- Investigate effect on the 250 m radial antennas
- Earth magnetic field requires gyrotropic extension of Drude model


NASA IMAGE RPI in Magnetosphere

- Farfield pattern, antenna impedance
- Gyrotropic Drude model

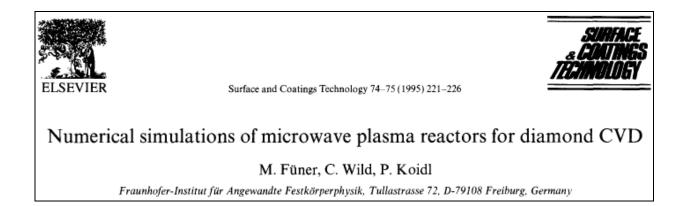
jon.schoenberg@ll.mit.edu


NASA IMAGE RPI in Magnetosphere

Non-destructive Sterilization

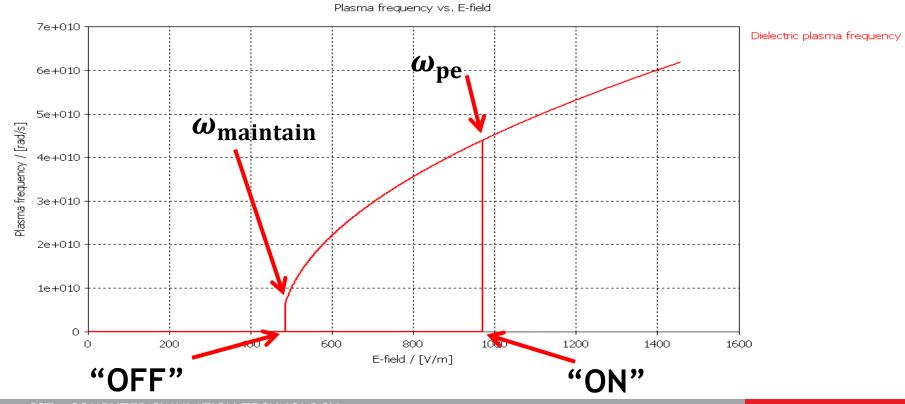
PET bottles

Medical tools

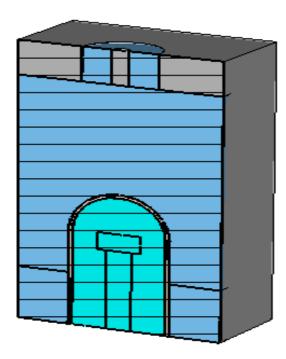


steves@aept.ruhr-uni-bochum.de

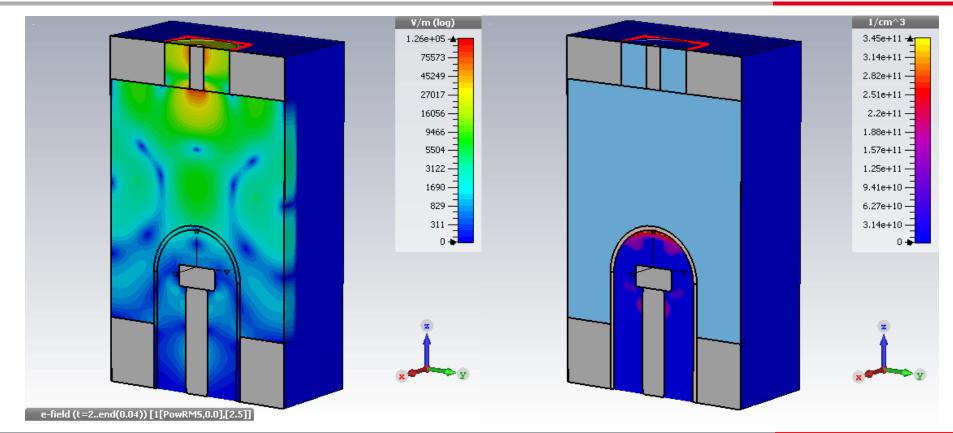
stapelmann@aept.ruhr-uni-bochum.de


CST - COMPUTER SIMULATION TECHNOLOGY | www.cst.com

Non-Linear Global Model


 The authors allow the plasma frequency to vary depending upon the local electric field

Nonlinear Material Properties


CST - COMPUTER SIMULATION TECHNOLOGY | www.cst.com

Example: CVD Plasma Reactor

F Silva et al., *MW engineering of plasma-assisted CVD reactors for diamond deposition*, J. Phys. Condens. Matter **21** (2009) 364202 and references therein

E-Field and Plasma Density

Thank You! Questions?

