Multi-granular Waveband Switching in Optical Networks

Dr. Xiaojun Cao

Outline

- Optical Networks
 - Why Optical Networks?
 - Wavelength Routed Network
 - Connection establishment
- Multi-granular Waveband Switching
 - Architectures
 - ☐ Traffic Grouping (or Wavebanding) Strategies
 - Wavebanding Approaches: Optimal (via ILP) and Heuristic
- Summary

Why Optical Network?

- □ Extraordinary transmission capacity
 - \square 25THz * 1bit/Hz = 25Tbps
 - \square Tbps = 10^{12} bps = 17million phone calls = 500, 000 compressed TV channels
- Most cost-effective
 - □Cost/bit down by over 90% in last several years
- Traffic demand explosion
 - ☐ Internet growing at 100%/year (32x in 5 years)
 - □"US Bancorp backs up 100 TB financial data every night now."
 - David Grabski (VP Information Tech. US Bancorp), Qwest High Performance Networking Summit, Denver, CO. USA, June 2006.
 - □ "The Global Information Grid will need to store and access exabytes(10¹⁸) of data on a realtime basis by 2010"
 - Dr. Henry Dardy, Optical Fiber Conference, Los Angeles, CA USA, Mar. 2006
 - □ Electronic networks can hardly handle this traffic explosion

2006-7 BCS Championship Game Stadium

■ Network comprising more than 100,000 feet of fiber

Optical fiber

☐Fiber:a thin filament of glass that acts as a waveguide

Fiber

- □Transmission via *total internal* reflection
 - 1. $n_2 > n_1$
 - 2. θ >critical angle
- 3. Critical angle= $\sin^{-1}(n_1/n_2)$, Snell's Law

Current optical transmission technology

- ■Wavelength division multiplexing (WDM)
 - \square Each fiber carries multiple non-overlapping wavelengths (λ)
 - ☐ Each wavelength carrying huge data/traffic (e.g.,10Gbps)
 - ☐ Users transmit data at the *same* time on different wavelengths (colors)

What is Optical Networking?

- Using optical fiber as medium for sending information
 - Optical Transmitter/ Receiver, Optical Amplifier
 - □Transmission: **Optical Fiber**
 - Switching: could be <u>optical</u>, could be <u>electronic</u> could be <u>circuit</u>, could be <u>packet</u>, could be <u>burst</u>

Optical Cross-connect (OXC): switching router

- OXC is a key component to manage/route traffic
- Components of an OXC node
 - DeMux/Mux split/combine the wavelengths in fibers
 - Switch connects the wavelengths to one another using ports
 - □ Requiring one port for each wavelength

OXC Switching Fabric Example

MicroElectroMechanical Systems (MEMS)

A MEMS Mirror

- ☐ NxN switch: N² mirrors
- ms switching speed

Major Optical Networking Issues

- ■No optical buffer memory (i.e. RAM)
- □ Difficult to process packet headers at high speed or optically
 - □ Electronic processing expensive
 - □Scalability, power, latency
- □ Lack of precision optical synchronization
- □Contention of traffic at the switching routers
- □ Survivability is extremely important

Paradigms of Optical Switching

- ■Switching technologies
 - Optical Packet Switching
 - optical buffer and logic not be available for a long time
 - Optical Burst Switching
 - ☐ fast, nanosecond optical switches
 - Optical Circuit Switching
 - □Simpler, switch wavelengths rather than switching bits.
 - ■Wavelength Routed Networks (WRNs)
 - Waveband Switching (WBS)

Wavelength Routed Networks (WRNs)

- Physical topology
 - Switching routers (i.e., cross-connects) connected by fiber links.
- Circuit Switching using Lightpaths
 - A lightpath has to be setup before data transmission
 - □ A lightpath is a connection between two nodes
 - \square Setup by using a dedicated wavelength (λ) on each fiber link.

Routing and Wavelength Assignment (RWA)

- Definition
 - ☐ Given: network topology, a set of end-to-end lightpath (i.e. connection) requests
 - Problem: Determine routes and wavelengths for the requests
- Constraints
 - Wavelength capacity: lightpaths can't use the same wavelength (color) on the same link.
 - Wavelength continuity: a lightpath must use the same wavelength on all the links it spans (No wavelength conversion)

Optimal RWA is NP-Complete

- Objective:
 - Establish all the connections using minimum number of wavelengths
- Two sub-problems
 - Routing
 - Wavelength Assignment (WA) graph coloring

Multi-granular Waveband Switching

Wavelength Routed Networks (WRNs)- Revisited

Optical Cross-connect (Ordinary-OXC)

Why Waveband Switching?

- To satisfy the ever increasing traffic demand
 - Use a large number of fibers & more wavelengths per fiber
- ☐ Increases the size (i.e., port counts) of ordinary-OXC
 - Manufacturing & deploying large OXCs is expensive
 - Huge CApital EXpenditures (CAPEX)
 - Managing/controlling large OXCs is critical but difficult
 - Huge OPerating EXpenditures (OPEX)
 - The deployment and potential use of large OXC is limited
 - Unproven reliability (e.g.1000x1000 ports)
 - huge costs
 - ☐ (un) scalability
- Need a more cost-effective way to manage a large number of wavelengths

The Waveband Switching Solution

- ☐ 60-80% is bypass traffic
 - avoid demux every fiber
- A new flexible switching technique Waveband Switching (WBS)
 - Waveband: a group of several wavelengths
 - □ All wavelengths in the band are switched as a single entity (using one port)
- □ A new OXC architecture Multi-Granular OXC (MG-OXC) can switch traffic at multiple granularities
 - single-wavelength
 - wavelength-groups (bands)
 - entire fiber

Port Saving

☐ All 4 lightpaths carry bypass traffic at B & C

Three-layer Multi-Granular OXC (MG-OXC) for WBS

WRNs Versus WBS

- Wavelength Routed Networks
 Waveband Switching Networks
 - Switch lightpaths only at wavelength level
 - Need one switch port for each wavelength
 - Using Ordinary-OXC
 - Need to solve RWA
- Major merits of WBS
 - reduce port count
 - reduce complexity

- Switch lightpaths at Fiber, band, wavelength level
- May switch a group of wavelengths using one port
- Using MG-OXC
- Need to solve RWA + Grouping

- simplify network management
- better scalability

Challenges Addressed in My Work

- MG-OXC architecture design
 - □ Compare different MG-OXC architectures
 - Reconfigurable MG-OXCs
- New algorithms and analytic models are needed
 - Static traffic (Off-line case)
 - Multi-Fiber vs. Single-Fiber
 - Dynamic traffic (On-line case)
 - Incremental traffic
 - Fully dynamic traffic
 - Wavelength/waveband conversion
 - Protection/restoration in WBS networks
- □ Has more constraints (i.e., grouping): optimization is still NPcomplete
- □ Our methods:
 - ☐ Integer Linear Programming (ILP), Dynamic Programming, Markov Chain, Rational Approximation, Heuristic Algo., etc.

Static Waveband Switching (WBS) problem (Off-line Case)

- Given:
 - Network topology
 - ☐ Each fiber has a fixed number of bands (*B*)
 - Each band has a fixed number (W) as well as a fixed set of wavelengths
 - Static traffic demands
 - No wavelength conversion
- Goal:
 - ☐ Satisfy **all** traffic with a **minimum** number of ports

Group Strategies: End-to-end grouping

Group lightpaths with the same source-destination pair only

Group Strategies: One-end grouping

Group lightpaths from the same source or lightpaths with same destination

Group Strategies: Sub-path grouping

☐ Group lightpaths with common intermediate links (i.e. sub-paths), from *any* source to *any* destination

☐ Sub-path grouping is the most powerful, but also complex. We are the first to utilize this method.

Static WBS problem: Approach

- 1. Integer Linear Programming (ILP)
 - Optimize the routes, wavelength assignments/grouping
 - Not feasible for large problem sizes
 - Uses too much time and memory
 - Serves as a performance yardstick for other heuristics
 - Optimal, uses a minimum number of ports
- 2. Heuristic Algorithms
 - Waveband Oblivious (optimal) RWA (WBO-RWA)
 - Balanced Path with Heavy-Traffic first waveband assignment (BPHT)
- 3. Performance analysis of BPHT and establish lower and upper bounds on port count

ILP model for WBS

Objective:

$$\min[\alpha \times \sum_{n} WXC_{n} + \beta \times \sum_{n} BXC_{n} + \gamma \times \sum_{n} FXC_{n}]$$

- Weight or coefficient of cost per port
 - **α**: WXC layer
 - □ β: BXC layer
 - γ: FXC layer
- $\alpha = \beta = \gamma = 1$, minimize the total number of MG-OXC ports in the network

ILP model for WBS: Constraints

- Traffic flow constraints
 - Satisfy all the traffic demands

$$V_{i,o,p}^{n,w} = \begin{cases} \text{if a lightpath for node pair } p \text{ passes node } n \text{ using wavelength} \\ \mathbf{w} \text{ from incoming fiber } i \text{ to outgoing fiber } o \end{cases}$$

$$v_{i,o,p}^{n,w} = \begin{cases} \mathbf{w} \text{ from incoming fiber } i \text{ to outgoing fiber } o \end{cases}$$

$$v_{i,o,p}^{n,w} = \begin{cases} \mathbf{w} \text{ from incoming fiber } i \text{ to outgoing fiber } o \end{cases}$$

$$v_{i,o,p}^{n,w} = \begin{cases} \mathbf{w} \text{ from incoming fiber } i \text{ to outgoing fiber } o \end{cases}$$

$$v_{i,o,p}^{n,w} = \begin{cases} \mathbf{w} \text{ from incoming fiber } i \text{ to outgoing fiber } o \end{cases}$$

$$v_{i,o,p}^{n,w} = \begin{cases} \mathbf{w} \text{ from incoming fiber } i \text{ to outgoing fiber } o \end{cases}$$

$$v_{i,o,p}^{n,w} = \begin{cases} \mathbf{w} \text{ from incoming fiber } i \text{ to outgoing fiber } o \end{cases}$$

 t_{p} : traffic demand of node pair p

If node n is the source node of p, then the number of lightpaths adding from node n has to be tp
$$\sum_{w,i\in A_n,o\in O_n} V_{i,o,p}^{n,w} = t_p, \quad n=p.src \quad \forall p$$

$$\sum_{w,i\in I_n,o\in D_n} V_{i,o,p}^{n,w} = t_p, \quad n=p.dest \quad \forall p$$
 If node n is the destination node of p, then the number of lightpaths dropping from node n, has to be to

of lightpaths dropping from node n has to be tp

ILP model for WBS: Constraints cont.

Wavelength capacity-constraint

$$\begin{cases} \sum_{p,o \in O_n} V_{i,o,p}^{n,w} \leq \mathbf{1}, & \forall n,w,i \in I_n \\ \sum_{p,i \in I_n} V_{i,o,p}^{n,w} \leq \mathbf{1}, & \forall n,w,o \in O_n \end{cases}$$

- Wavelength continuity-constraint
- Waveband switching
 - Appropriately switch the lightpaths through the switch fabrics
- Mux/Demux
 - Appropriately Mux/Demux the lightpaths
- Detailed formulations in our papers
 - Use CPLEX solve all the formulations
 - Map variables (e.g., V) back to waveband assignment

Heuristic: Waveband Oblivious RWA (WBO-RWA)

- Based on an optimal RWA
 - Routing and wavelength assignment (RWA) is completely oblivious to the existence of wavebands
- □ Then group the assigned wavelengths into bands and calculate the number of required ports
 - ☐ The grouping is done as an *afterthought*
- ☐ As to be shown, WBO-RWA is not efficient in WBS
 - ☐ Efficient in Wavelength Routed Networks (WRNs)
 - ☐ In general, existing techniques for WRNs cannot be directly applied to WBS

Heuristic: BPHT - basic ideas

- □Balanced Path with Heavy-Traffic first waveband assignment (BPHT)
 - 1. Load balanced routing of lightpaths
 - 2. Wavelength assignments
 - based on *sub-path* grouping
 - **a.** Define a set Q_{sd} for every node pair (s,d), which includes all its subpaths. Calculate weight for each set

$$W_{sd} = \sum_{p \in Q_{sd}} h_p * T_p$$

- b. Starting with largest weight (or heaviest traffic) set,
 - assign wavelengths to lightpaths from s
 - assign wavelengths to lightpaths to d
 - Recursively assign wavelengths, until all sub-paths are assigned
- 3. Group and switch as many wavelengths into bands

Illustration of BPHT

After load balance

Start wavelength assignment

□ Source S₀, destination D₁ $LP_{S_0D_1} = \{1,2,3,4\}$ $W_{S_0D_1} = \sum_{p \in P_{D_1}^{S_0}} h_p \times t_p = 5 \times 1 + 4 \times 1 + 3 \times 1 + 2 \times 1 = 14$

DONE

Source S_4 , destination D_2 $LP_{S_4D_2} = \{4,5,5\}$ $W_{S_4D_2} = \{h_p \times t_p = 9\}$

RECOMPUTE

$$LPs_4D_2 = \{5,6\}$$
 $W_{S_4D_2} = \sum_{p \in P_{D_2}^{S_4}} h_p \times t_p = 7$

DONE

Performance Analysis

- Analyze the total number of ports in an MG-OXC network
 - Based on BPHT
 - Port count=P(mux/demux)+P(add/drop)+P(switching)
- Provide lower bound and upper bound on the total port count
 - G: lightpaths from incoming links
 - A: added lightpaths
 - \square K: number of wavelengths (λ s) per fiber
 - \square N: node number, δ : average node degree
 - ☐ F: number of fibers,
 - B: number of bands per fiber

LowerBound =
$$(\left\lceil \frac{G}{K} \right\rceil + \left\lceil \frac{A}{K} \right\rceil) \times \delta \times N$$

UpperBound = $\{\min[(A+G), F \times 2] + \}$

$$\min[(A+G), F \times B \times 2] + (A+G) \times \delta \times$$

Ports from BXC layer

Ports from WXC layer

Simulation Results I: random 6-nodes network

□ Results of ILP model, Algorithm WBO-RWA and Algorithm BPHT

Metrics	Optimal WBS using ILP	WBS using WBO-RWA	WBS using BPHT
Total network ports	4500	8300	4900
	★★★	★	★★★
Max. node ports	480	1160	600
	★★★	★	★★★
Wavelength resources	10,400	10,000	10,200
	★	★★★	★★

- □ ILP: optimal results, but very time consuming
- Heuristic WBO-RWA: inefficient too many ports
- ☐ Heuristic BPHT: sub-optimal, very *fast*
- □ ILP and BPHT in the process of **reducing** the ports use **more** wavelengths, **a trade-off**

Simulation Results II-- large network, uniform traffic

- □ 14 nodes, 21 bidirectional links NSF Network, *W*=4
- ILP doesn't work due to its time/memory consuming
- □ X axis: tp, number of lightpaths between each node pair p
- ☐ Y axis: ratio of the total ports needed by MG-OXC and ordinary-OXC
- ☐ MG-OXC *reduce* ports (cost)
- When tp is multiple of band size (i.e, W=4)
 - Add/drop/bypass at the *band* granularity
 - No lightpaths switch through WXC layer

Other Simulations & Selected Studies

- Simulation scenarios
 - Different network topology
 - Different band size
 - Random traffic vs. Uniform traffic
- Other selected studies: efficient algorithms and theoretical models
 - Multi-fiber vs. Single-Fiber
 - Dynamic traffic (e.g., Incremental, fully dynamic)
 - Waveband conversion
 - Protection/Restoration
- Found a number of useful insights
 - E.g., effect of band size, effect of multi-fiber, trade-offs, effect of waveband conversions

Summary

- Internet traffic continues to grow
- Electronic networks incapable of satisfying the exponential growth
- Optical networks provide the solution: Waveband Switching (WBS)
 - Cheap and reliable service
 - Reduce the cost of building and managing optical networks
- Optical networking is a *Promising* field
 - ☐ Tremendous potential remains *unexploited*
 - ☐ Much *research* needs to be done
 - ☐ Will be an *exciting* field of research for many many years to come

Questions?

Thank you!