Tracking and Equalizing Channels in Communication Systems and in Data Compression

Azadeh Vosoughi

University of Rochester June 28, 2007

Outline

• Training design for estimating wideband wireless channels with antenna arrays at transmitter and receiver

- Estimation theoretic perspective
- Information theoretic perspective
- Distributed data compression for sensor networks

Unifying theme: Channel equalization

• The increasing demand for ubiquitous wireless access generates a spiraling demand for bandwidth.

- Developing bandwidth efficient physical layer designs is critical.
- The designs need to be optimized for packet transmission.
- Advances in coding and modulation enable us to approach transmission limits, for a given communication channel.
- The challenging issue in wireless communication is channel estimation.

more services

- Unique characteristics: fading caused by multipath effect.
- The wireless channel is modelled as a linear filter.
- Discrete time representation of the channel input/output relationship:

$$y_i = Hx_i + n_i$$

• To enable channel estimation transmitter multiplexes data symbols s with known training symbols $t \Rightarrow x$ contains s and t.

• Training symbols and the specific multiplexing scheme are known *a priori* at the receiver.

Training Design in Wireless Communication Systems

- Current training designs are heuristic.
- Orthogonality between training and data decouples channel and symbol estimation.

• Tradeoff: Training improves the system performance; however, it spends the resources that could have been used for transmitting data.

• Investigating optimal training designs is important.

• Related Work: literature considered optimal training designs, assuming training and data symbols are separated either in time or frequency.

Sequential versus Joint Channel and Symbol Estimation

Questions

- Is separating training and data symbols for sequential estimation optimal?
- How is optimal training design for sequential estimation different from that of joint estimation?

Affine Precoding: A Unified Transmission Model

- $s \sim \mathcal{CN}(0, \sigma_{ss}^2 I)$ is a block of user's data and t is training vector.
- Affine precoding: x is linear precoded data Fs superimposed on t.

$$x = Fs + t$$

- Power constraint on transmit vector: $\mathcal{P} = E\{||\mathbf{x}||^2\} = \mathcal{P}_s + \mathcal{P}_t$.
- Affine precoding includes several multiplexing techniques:
 - \blacktriangleright GSM and IS136: columns of F are unit vectors.
 - ▶ IEEE 802.11a/HYPERLAN: F is FFT matrix.

Channel Model: Block Fading frequency Selective MIMO

$$\boldsymbol{y}_i = \boldsymbol{H} \boldsymbol{x}_i + \boldsymbol{n}_i$$

Assumptions

- \triangleright K transmit and R receive antennas,
- Length of a transmission block is P, length of channel memory is L
- Fransmit vector $x_i = vec(x[iP], x[iP+1], \dots, x[iP+P-1])$,
- ▶ Receive vector $y_i = vec(y[iP + L], y[iP + L + 1], ..., y[iP + P 1]),$
- ► Channel vector $\mathbf{h} = vec([\mathbf{H}[0] \dots \mathbf{H}[L]]^T),$
- ▶ Rayleigh fading $h \sim CN(0, R_h)$, $n_i \sim CN(0, \sigma_{nn}^2 I)$, n_i , and h are independent.

- Minimizing MSE of channel estimation:
 - We consider an estimation theoretic bound (Cramer-Rao Bound).
 - CRB establishes a lower bound on the MSE of any estimate of h:

$$E\{(\boldsymbol{h}-\widehat{\boldsymbol{h}})(\boldsymbol{h}-\widehat{\boldsymbol{h}})^{H}\} \geq C_{h}$$

• Optimal training is the one that minimizes $trace(\mathcal{C}_h)$, where \mathcal{C}_h is CRB for estimating channel.

Maximizing information rate:

- We consider a lower bound on mutual information $I(s; \hat{s})$.
- Most receivers make the decision about the symbols based on soft estimate of the modulated symbols and $I(s; \hat{s}) \leq I(s; y)$.

• $I(s; \hat{s})$ measures the reduction in the uncertainty about s due to the knowledge of \hat{s} .

• Optimal training is the one that maximizes this lower bound.

<u>Notation</u> $y = Hx + n = H(Fs + t) + n \Rightarrow Ht = \Phi(t)h$ and $Hf_i = \Phi(f_i)h$.

Optimality condition for sequential estimation

Minimizing $tr(C_h)$ requires: $\Phi(t)^H \Phi(f_i) = 0$ i = 1, 2, ..., N

Remark 1: To satisfy orthogonality constraint it is sufficient to separate data and training in frequency domain.

• Remark 2: Under orthogonality constraint $C_h = (\sigma_{nn}^{-2} \Phi(t)^H \Phi(t) + E_h \{\Xi\} + R_h^{-1})^{-1}$.

Optimality condition for joint estimation

Minimizing trace(C_h) requires: $\sigma_{ss}^2 \sum_{i=1}^N \Phi(f_i)^H \Phi(f_i) + \Phi(t)^H \Phi(t) = \Lambda$

where Λ is diagonal.

▶ Remark 3: For diagonalization no orthogonality constraint is required to be satisfied, and $C_h = (\sigma_{nn}^{-2}\Lambda + R_h^{-1})^{-1}$.

• $K = R = 2, L = 3, \sigma_{ss}^2 = 1$

• For sequential estimate minimizing $trace(\mathcal{C}_h)$ requires $\mathcal{P} = \mathcal{P}_t$. For joint estimate minimum of $trace(\mathcal{C}_h)$ depends on \mathcal{P} , not \mathcal{P}_t .

• Training design cannot be only based on minimizing channel estimation error \Rightarrow we consider mutual information $I(s; \hat{s})$.

A Lower Bound on Mutual Information $I(s; \hat{s})$

• We link the lower bound on $I(s; \hat{s})$ with symbol estimation performance.

Let \hat{s} be any symbol estimate, we have $E\{(s - \hat{s})(s - \hat{s})^H\} \ge C_s$, where C_s is CRB for estimating the symbols. $I(s; \hat{s})$ can be lower bounded as:

$$I(s; \widehat{s}) \geq log(|\sigma_s^2 \ \mathcal{C}_s^{-1}|)$$

Remark 1: Maximizing lower bound is equivalent to minimizing $|C_s|$.

Remark 2: A better symbol estimate results in a higher transmission rate.

Lower bound for sequential estimation

Receiver models $h = \hat{h} + \tilde{h}$. Assuming \hat{h} is the LMMSE channel estimate: $I(s; \hat{s}) \ge E_{\hat{h}}\{I(s; \hat{s}|\hat{h})\}$ $= E_{\hat{h}}\{\log(|\sigma_{ss}^{2}E_{s}\{F^{H}\hat{H}^{H}R_{v|s}^{-1}|\hat{H}F + \mathcal{E}^{H}(R_{v|s}^{-1}\otimes D^{H}|R_{v|s}^{-1}|D)\mathcal{E}\} + I|)\}$

- **Remark 1**: bound depends of \hat{H} and estimation error covariance.
- Lower bound for joint estimation $I(s; \hat{s}) \geq \log(|\sigma_{ss}^{2} C_{s}^{-1}|)$ $C_{s}^{-1} = \sigma_{nn}^{-2} \begin{bmatrix} tr(R_{h} \mathsf{F}_{1}^{H} \mathsf{F}_{1}) & \cdots & tr(R_{h} \mathsf{F}_{1}^{H} \mathsf{F}_{N}) \\ \vdots & \ddots & \vdots \\ tr(R_{h} \mathsf{F}_{N}^{H} \mathsf{F}_{1}) & \cdots & tr(R_{h} \mathsf{F}_{N}^{H} \mathsf{F}_{N}) \end{bmatrix} + \sigma_{ss}^{-2} I$

Remark 2: bound is independent of \hat{H} and estimation error covariance.

Remark 3: maximizing bound leads to the same optimality conditions derived for minimizing channel estimation error.

Power Allocation Maximizing Mutual Information Lower Bound

• Minimizing the bound requires $\mathcal{P}_t \simeq 0.4\mathcal{P}$ for sequential estimate and $\mathcal{P}_t = 0$ for joint estimate.

- We investigated optimal training for transmission over wideband wireless MIMO channels.
- We adopted affine precoding and considered channel estimation error and information rate as figures of merit.
- We showed that optimal training design depends on the receiver structure.
- For joint estimate training is not needed.
- Implementing joint estimate is computationally expensive.
- For sequential estimation training is needed for minimizing channel estimation error and maximizing mutual information lower.
- For sequential estimation separating data and training in frequency is optimal.

Future Work

- Optimal affine precoding design for practical communication systems:
 - specific channel and symbol estimation algorithms,
 - practical measures for system performance (e.g., BER),
 - specific channel coding and modulation schemes.
- Tradeoff between training and error correction channel coding.

Outline

• Training design for estimating wideband wireless channels with antenna arrays at transmitter and receiver

- Estimation theoretic perspective
- Information theoretic perspective
- Distributed data compression for sensor networks

Motivation

• Sensor networks consist of many low power and cheap sensors with limited computational capabilities.

- Neighboring sensors measure highly correlated data.
- Sensors send their measured data to a central node for joint decoding.
- The sensors could remove redundant data, if joint encoding is allowed.

• **Question**: is there a way of removing the redundancy in a completely distributed manner (without requiring the sensors to inter-communicate)?

• Coding with side information enables distributed data compression.

Example

▶ Rochester and Ithaca report the weather of 100 days in Summer to Washington.

▶ Washington knows the weather at Rochester, and the joint statistics.

▶ Ithaca is not aware of the weather in Rochester; however, it knows the joint statistics.

Question

How many bits are needed to convey the Ithaca weather to Washington?

Coding with Side Information: Model

Set up: x, y are related through p(x, y), known at encoder and decoder.

• (Slepian and Wolf coding) for discrete x, y one can compress x into $R < R_x$ bits to reconstruct x perfectly.

Answer to the question: for independent coding $R_x = 100$ bits, and for coding with side information R = 50 bits are needed.

• (Wyner and Ziv coding) for continuous x, y one can compress x into $R < R_x$ bits to reconstruct x with MSE distortion D (e.g., $\mathbb{E}\{(x - \hat{x})^2\} = D$)

Conclusion: exploiting correlation at encoder/decoder allows a reduction of transmission rate.

Challenge: proofs are not constructive and are based on the idea of binning.

Most Relevant Work: DISCUS [Pradhan and Ramchandran 2003]

- DISCUS is a constructive approach to the problem of coding with side information.
- Assumption: the sources x, y are related by y = x + n.
- **Encoder** quantizes x to c_5 , and finds the bin index p = 1.

▶ Given p and y decoder decides c_5 based on minimum distance rule, and forms $\hat{x} = \mathbb{E}\{x|y, c_5\}$.

• Question: What if the relationship between y and x cannot be modelled as y = x + n?

A General Linear Correlation Model

• We consider two vector sources $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^N$ that are related by

$$y = Hx + n \qquad \xrightarrow{x} H \qquad \xrightarrow{y} y$$

Assumptions

- ▶ H is constant, $\mathbb{E}\{xx^T\} = R_{xx}$, $\mathbb{E}\{nn^T\} = R_{nn}$, x and n are independent,
- **>** Decoder knows \boldsymbol{y} and the parameters \boldsymbol{H} , \boldsymbol{R}_{xx} , \boldsymbol{R}_{nn} ,
- **>** Encoder knows neither y nor H, R_{nn} .

Goal: develop low complexity compression techniques to encode x.

$$y = Hx + n$$

• It is more general than the model y = x + n.

Potential Application: audio field sensors

• For jointly Gaussian sources the model is exact.

Relevant Questions

• Can we use the code construction designed for scalar source coding (e.g., DISCUS) to solve vector source coding problem?

• What is the structure of encoder/decoder?

• What is the best rate allocation to encode components of x, subject to a sum rate constraint?

• We use tools from communications (linear equalizer G) to convert vector source coding problem into several scalar source coding problems.

$$y = Hx + n \quad \Rightarrow \quad z = Gy = x + w$$

Zero Forcing G: GH = I LMMSE equalizer $G = \arg \min \mathbb{E}\{||Gy - x||^2\}$

• Given compression rate r_i bits/sample encoder quantizes x_i and provides decoder with bin indices p_i . Given p_i and z_i decoder decides on quantization intervals, and forms \hat{x} .

Rate Allocation Policy in Distributed Data Compression

- Performance of the proposed system depends on rate allocation policy.
- Encoder compresses x_i with r_i bits/sample.
- Optimal rate allocation: given $R = \sum_{i=1}^{N} r_i$ what is the best $\{r_i\}_{i=1}^{N}$? $y = Hx + n \Rightarrow Gy = z = x + w$
- Statistics of w depends on G.
- Each z_i corresponds to a different $var(w_i) \Rightarrow r_i$ should be adapted to $var(w_i)$.
- Proposition: assign bits such that higher $var(w_i) \Rightarrow more r_i$.

▶ Remark 1: the rate allocation policy contradicts the one in communication systems where higher $var(w_i) \Rightarrow less r_i$.

▶ Remark 2: higher $var(w_i) \Rightarrow z_i$ is less correlated is to $x_i \Rightarrow$ encoder needs to send more bits to the decoder.

Empirical Rate Distortion Bound: DISCUS vs. Decoder With LMMSE

• N = 4, H and R_{xx} are Toeplitz , $x \sim \mathcal{N}(0, R_{xx})$ and $n \sim \mathcal{N}(0, \sigma_n^2 I)$ with 10 $log_{10}\sigma_n^2 = -12$ dB.

Summary

- We considered coding of vector source x with side information y when the correlation between x and y is linear y = Hx + n.
- Using the equalization techniques we provided low complexity compression algorithms.

• The compression scheme reduces transmission rate, without explicitly assuming the correlation model at the encoder.

• We proposed a rate allocation policy which minimizes error probability of minimum distance detection.

- How can we obtain parameters of the correlation model at the decoder?
- How can we make the bin index transmission robust to possible noise?
- How can we extend this code construction to more than two vector sources?

