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Outline

• Training design for estimating wideband wireless channels with antenna
arrays at transmitter and receiver

I Estimation theoretic perspective

I Information theoretic perspective

• Distributed data compression for sensor networks

Unifying theme: Channel equalization
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Motivation

• The increasing demand for ubiquitous wireless access generates a spiral-
ing demand for bandwidth.

• Developing bandwidth efficient physical layer designs is critical.

• The designs need to be optimized for packet transmission.

• Advances in coding and modulation enable us to approach transmission
limits, for a given communication channel.

• The challenging issue in wireless communication is channel estimation.

bandwidth
more

more services

more users
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Channel Estimation in Wireless Communication Systems

• Unique characteristics: fading caused by multipath effect.

• The wireless channel is modelled as a linear filter.

• Discrete time representation of the channel input/output relationship:

yi = Hxi + ni

• To enable channel estimation transmitter multiplexes data symbols s
with known training symbols t ⇒ x contains s and t.

• Training symbols and the specific multiplexing scheme are known a priori
at the receiver.
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Training Design in Wireless Communication Systems
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• Current training designs are heuristic.

• Orthogonality between training and data decouples channel and symbol
estimation.

• Tradeoff: Training improves the system performance; however, it spends
the resources that could have been used for transmitting data.

• Investigating optimal training designs is important.

• Related Work: literature considered optimal training designs, assuming
training and data symbols are separated either in time or frequency.
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Sequential versus Joint Channel and Symbol Estimation
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Questions

• Is separating training and data symbols for sequential estimation optimal?

• How is optimal training design for sequential estimation different from
that of joint estimation?
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Affine Precoding: A Unified Transmission Model
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• s ∼ CN (0, σ2
ssI) is a block of user’s data and t is training vector.

• Affine precoding: x is linear precoded data Fs superimposed on t.

x = Fs + t

• Power constraint on transmit vector: P = E{||x||2} = Ps + Pt.

• Affine precoding includes several multiplexing techniques:

I GSM and IS136: columns of F are unit vectors.

I IEEE 802.11a/HYPERLAN: F is FFT matrix.
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Channel Model: Block Fading frequency Selective MIMO
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yi = Hxi + ni

Assumptions

I K transmit and R receive antennas,
I Length of a transmission block is P , length of channel memory is L
I Transmit vector xi = vec(x[iP ], x[iP + 1], . . . , x[iP + P − 1]),
I Receive vector yi = vec(y[iP + L], y[iP + L + 1], . . . , y[iP + P − 1]),
I Channel vector h = vec

(
[ H[0] . . . H[L] ]T

)
,

I Rayleigh fading h ∼ CN (0, Rh), ni ∼ CN (0, σ2
nnI), ni, and h are inde-

pendent.
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Two Measures of System Performance

• Minimizing MSE of channel estimation:
• We consider an estimation theoretic bound (Cramer-Rao Bound).

• CRB establishes a lower bound on the MSE of any estimate of h:

E{(h− ĥ)(h− ĥ)H} ≥ Ch

• Optimal training is the one that minimizes trace(Ch), where Ch is
CRB for estimating channel.

• Maximizing information rate:

• We consider a lower bound on mutual information I(s; ŝ).

• Most receivers make the decision about the symbols based on soft
estimate of the modulated symbols and I(s; ŝ) ≤ I(s;y).

• I(s; ŝ) measures the reduction in the uncertainty about s due to the
knowledge of ŝ.

• Optimal training is the one that maximizes this lower bound.
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Minimizing Channel Estimation Error

Notation y = Hx+n = H(Fs+ t)+n ⇒ Ht = Φ(t)h and Hf i = Φ(f i)h.

• Optimality condition for sequential estimation

Minimizing tr(Ch) requires:
Φ(t)HΦ(f i) = 0 i = 1,2, . . . , N

I Remark 1: To satisfy orthogonality constraint it is sufficient to separate
data and training in frequency domain.

I Remark 2: Under orthogonality constraint Ch = (σ−2
nn Φ(t)HΦ(t) +

Eh{Ξ}+ R−1
h )−1.

• Optimality condition for joint estimation

Minimizing trace(Ch) requires:

σ2
ss

N∑

i=1

Φ(f i)
HΦ(f i) + Φ(t)HΦ(t) = Λ

where Λ is diagonal.
I Remark 3: For diagonalization no orthogonality constraint is required
to be satisfied, and Ch = (σ−2

nn Λ + R−1
h )−1.
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Power Allocation Minimizing Channel Estimation Error

• K = R = 2, L = 3, σ2
ss = 1

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

SNR (dB)

ch
an

ne
l e

st
im

at
io

n 
C

R
B

 (
dB

)

 

 

sequential P
t
=0.1P

sequential P
t
=0.4P

joint            P
t
=0.1P

joint            P
t
=0.4P

• For sequential estimate minimizing trace(Ch) requires P = Pt. For joint
estimate minimum of trace(Ch) depends on P, not Pt.

• Training design cannot be only based on minimizing channel estimation
error ⇒ we consider mutual information I(s; ŝ).
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A Lower Bound on Mutual Information I(s; ŝ)

• We link the lower bound on I(s; ŝ) with symbol estimation performance.

Let ŝ be any symbol estimate, we have E{(s − ŝ)(s − ŝ)H} ≥ Cs, where Cs

is CRB for estimating the symbols. I(s; ŝ) can be lower bounded as:

I(s; ŝ) ≥ log(|σ2
s C−1

s |)

I Remark 1: Maximizing lower bound is equivalent to minimizing |Cs|.
I Remark 2: A better symbol estimate results in a higher transmission
rate.
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Mutual Information Lower Bound For Gaussian Symbols

• Lower bound for sequential estimation

Receiver models h = ĥ + h̃. Assuming ĥ is the LMMSE channel estimate:

I(s; ŝ) ≥ Eĥ{I(s; ŝ|ĥ)}
= Eĥ{log(|σ2

ssEs{F HĤ
H

R−1
v|s ĤF + EH(R−1

v|s ⊗DH R−1
v|s D)E}+ I|)}

I Remark 1: bound depends of Ĥ and estimation error covariance.

• Lower bound for joint estimation

I(s; ŝ) ≥ log(|σ2
ssC−1

s |)

C−1
s = σ−2

nn




tr(RhF
H
1 F1) · · · tr(RhF

H
1 FN)

... . . . ...
tr(RhF

H
NF1) · · · tr(RhF

H
NFN)


 + σ−2

ss I

I Remark 2: bound is independent of Ĥ and estimation error covariance.

I Remark 3: maximizing bound leads to the same optimality conditions
derived for minimizing channel estimation error.
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Power Allocation Maximizing Mutual Information Lower Bound
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Joint Estimate
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• Minimizing the bound requires Pt ' 0.4P for sequential estimate and
Pt = 0 for joint estimate.
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Summary

• We investigated optimal training for transmission over wideband wireless
MIMO channels.

• We adopted affine precoding and considered channel estimation error
and information rate as figures of merit.

• We showed that optimal training design depends on the receiver struc-
ture.

• For joint estimate training is not needed.

• Implementing joint estimate is computationally expensive.

• For sequential estimation training is needed for minimizing channel esti-
mation error and maximizing mutual information lower.

• For sequential estimation separating data and training in frequency is
optimal.
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Future Work

• Optimal affine precoding design for practical communication systems:

I specific channel and symbol estimation algorithms,

I practical measures for system performance (e.g., BER),

I specific channel coding and modulation schemes.

• Tradeoff between training and error correction channel coding.
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Outline

• Training design for estimating wideband wireless channels with antenna
arrays at transmitter and receiver

I Estimation theoretic perspective

I Information theoretic perspective

• Distributed data compression for sensor networks
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Motivation

• Sensor networks consist of many low power and cheap sensors with
limited computational capabilities.

• Neighboring sensors measure highly correlated data.

• Sensors send their measured data to a central node for joint decoding.

• The sensors could remove redundant data, if joint encoding is allowed.

• Question: is there a way of removing the redundancy in a completely
distributed manner (without requiring the sensors to inter-communicate)?
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Coding with Side Information: Example

• Coding with side information enables distributed data compression.

Example

I Rochester and Ithaca report the weather of 100 days in Summer to
Washington.

I Washington knows the weather at Rochester, and the joint statistics.

I Ithaca is not aware of the weather in Rochester; however, it knows the
joint statistics.
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Question

I How many bits are needed to convey the Ithaca weather to Washington?
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Coding with Side Information: Model

R ^x

y
p(x,y) x

encoder
decoder

Set up: x, y are related through p(x, y), known at encoder and decoder.

• (Slepian and Wolf coding) for discrete x, y one can compress x into
R<Rx bits to reconstruct x perfectly.

I Answer to the question: for independent coding Rx = 100 bits, and for
coding with side information R = 50 bits are needed.

• (Wyner and Ziv coding) for continuous x, y one can compress x into
R<Rx bits to reconstruct x with MSE distortion D (e.g., E{(x− x̂)2} = D)

Conclusion: exploiting correlation at encoder/decoder allows a reduction
of transmission rate.

Challenge: proofs are not constructive and are based on the idea of bin-
ning.
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Most Relevant Work: DISCUS [Pradhan and Ramchandran 2003]

• DISCUS is a constructive approach to the problem of coding with side
information.

• Assumption: the sources x, y are related by y = x + n.

I Encoder quantizes x to c5, and finds the bin index p = 1.

I Given p and y decoder decides c5 based on minimum distance rule, and
forms x̂ = E{x|y, c5}.

decoder

estimator

min
distance
detector

^

binningquantization

encoder

x

y

C2C1 C5 C6C4C3 C7 C8

xy

x = x

p(x|y)

bin1 bin1 bin1bin2 bin2 bin2 bin1 bin2

yx
n

• Question: What if the relationship between y and x cannot be modelled
as y = x + n?
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A General Linear Correlation Model

• We consider two vector sources x, y ∈ RN that are related by

y = Hx + n x

n
y

H

Assumptions

I H is constant, E{xxT} = Rxx, E{nnT} = Rnn, x and n are independent,

I Decoder knows y and the parameters H, Rxx, Rnn,

I Encoder knows neither y nor H, Rnn.

Goal: develop low complexity compression techniques to encode x.
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Why a Linear Correlation Model?

y = Hx + n

• It is more general than the model y = x + n.

Potential Application: audio field sensors
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• For jointly Gaussian sources the model is exact.
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Relevant Questions

• Can we use the code construction designed for scalar source coding (e.g.,
DISCUS) to solve vector source coding problem?

• What is the structure of encoder/decoder?

• What is the best rate allocation to encode components of x, subject to
a sum rate constraint?
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Encoder and Decoder Architecture: Equalization at the Decoder

• We use tools from communications (linear equalizer G) to convert vector
source coding problem into several scalar source coding problems.

y = Hx + n ⇒ z = Gy = x + w

Zero Forcing G : GH = I LMMSE equalizer G = argminE{||Gy − x||2}
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G
z

x = x^quantization

quantization

y

x
min

z

n
y

H
x

G
z

w
x

• Given compression rate ri bits/sample encoder quantizes xi and provides
decoder with bin indices pi. Given pi and zi decoder decides on quantization
intervals, and forms x̂.
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Rate Allocation Policy in Distributed Data Compression

• Performance of the proposed system depends on rate allocation policy.

• Encoder compresses xi with ri bits/sample.

• Optimal rate allocation: given R =
∑N

i=1 ri what is the best {ri}N
i=1?

y = Hx + n ⇒ Gy = z = x + w

• Statistics of w depends on G.

• Each zi corresponds to a different var(wi) ⇒ ri should be adapted to
var(wi).

• Proposition: assign bits such that higher var(wi) ⇒ more ri.

I Remark 1: the rate allocation policy contradicts the one in communi-
cation systems where higher var(wi) ⇒ less ri.

I Remark 2: higher var(wi) ⇒ zi is less correlated is to xi ⇒ encoder
needs to send more bits to the decoder.
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Empirical Rate Distortion Bound: DISCUS vs. Decoder With LMMSE

• N = 4, H and Rxx are Toeplitz , x ∼ N (0, Rxx) and n ∼ N (0, σ2
nI) with

10 log10σ2
n = -12 dB.
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Empirical Rate Distortion Bound: Decoder With LMMSE,ZF,DFE
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Distortion vs. Correlation SNR :Decoder With LMMSE,ZF,DFE
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Summary

• We considered coding of vector source x with side information y when
the correlation between x and y is linear y = Hx + n.

• Using the equalization techniques we provided low complexity compres-
sion algorithms.

• The compression scheme reduces transmission rate, without explicitly
assuming the correlation model at the encoder.

• We proposed a rate allocation policy which minimizes error probability
of minimum distance detection.
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Future Work

• How can we obtain parameters of the correlation model at the decoder?

• How can we make the bin index transmission robust to possible noise?

• How can we extend this code construction to more than two vector
sources?
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