Breaking the Barriers in Wireless Network Information Theory

Salman Avestimehr

EMBS HealthTech Symposium April 15, 2010

Motivation

Overview

- Point-to-point channel
 - > Information theory provides an abstraction

Claude Shannon (1916-2001)

- Wireless network
 - > Does information theory give us a similar picture? Not yet.

Basic model for wireless medium

- Key features of wireless medium
 - > Broadcast
 - > Interference
 - High dynamic range of channel variations

Basic PHY layer model: additive-Gaussian channel model

What is known?

Point to point: $C = \frac{1}{2}\log(1 + SNR)$ (Shannon 1948)

Multiple access (Ahlswede, Liao 70's)

Broadcast (Cover, Bergmans 70's)

State of the art

- Unfortunately, we don't know the capacity of most other Gaussian networks
- 3 decades of studying basic networks with 3 or 4 nodes
 - Still the capacity is not known

How can we make progress?

Our approach

- Change the focus to approximation results
 - with hard guarantees on the gap to optimality
- We develop simpler deterministic channel models
 - De-emphasize the background noise
 - Focus on the interaction between users' signals
- Utilize them systematically to approximate the Gaussian model

Methodology

In this talk ...

- Introduce the deterministic channel model
- Apply it to some examples:
 - Relay network
- Distributed compressive sensing

Deterministic Model (A.-Diggavi-Tse 2007)

$$x = 0.b_1b_2b_3b_4b_5\dots$$

$$\sqrt{\mathtt{SNR}}\,x = b_1b_2\cdots b_n$$
, $b_{n+1}\cdots$

$$C = \frac{1}{2}\log(1 + SNR)$$

Least significant bits are truncated at noise level

$$n \leftrightarrow \left[\frac{1}{2}\log \text{SNR}\right]^{+}$$

$$C = \left[\frac{1}{2} \log SNR\right]^{+}$$

Multiple access

Gaussian

$$y = \sqrt{\text{SNR}_1} x_1 + \sqrt{\text{SNR}_2} x_2 + z$$

Deterministic

Broadcast

Gaussian

SNR_1 Rx_1

SNR₂ Rx₂

Deterministic

Relay Networks

Example: One relay

Gaussian

Decode-Forward is near optimal

Deterministic

- Gap is at most 1-bit
- On average it is much less than 1-bit

$$C \leq \min(\max(n_{SD}, n_{SR}), \max(n_{SD}, n_{RD}))$$

$$= n_{SD} + \min((n_{SR} - n_{SD})^+, (n_{RD} - n_{SD})^+)$$

Decode-Forward is optimal

Example: Two relays

Gaussian

 $\overline{C} - 2 \le C \le \overline{C}$

Deterministic

$$C = \min \begin{pmatrix} \max(n_{SR1}, n_{SR2}), \max(n_{R1D}, n_{R2D}), \\ n_{SR1} + n_{R2D}, & n_{SR2} + n_{R1D} \end{pmatrix}$$

Partial Decode-Forward is optimal

General deterministic relay networks (A.-Diggavi-Tse 2007)

Theorem: Cutset bound is achievable,

$$C_{\text{relay}} = \overline{C} = \min_{\Omega} \operatorname{rank}(G_{\Omega \to \Omega^c})$$

Our theorem is a generalization of Ford-Fulkerson max-flow min-cut theorem

Relaying scheme

Deterministic

- S encodes the message over T symbol times
- Each relay randomly maps the received signal into a transmit codeword
- D decodes the message

optimal

Gaussian

- S encodes the message over T symbol times
- Each relay,
 - Quantizes the received signal at noise level
 - Randomly maps it into a Gaussian codeword
- D decodes the message

Properties of the scheme

- Simple
 - Quantize
 - Map to a transmit codeword
- Relays don't need any channel information
- How does it perform?

Capacity of Gaussian relay networks (A.-Diggavi-Tse 2008)

Theorem: for any Gaussian relay network

$$\overline{C} - \kappa \le C \le \overline{C}$$

- \overline{C} is the cut-set upper bound on the capacity
- κ is a constant that depends on size of the network, but not the channel gains or SNR's of the links

Distributed Compressive Sensing

Compressive sensing

The measured data is very redundant!

- Almost all current systems:
 - Sample at Nyquist rate
 - Compression

How can we sense efficiently?

Compressive sensing (cont.)

Can we recover by having only a few "linear" measurements?

Compressive sensing (cont.)

- Can we recover by having only a few "linear" measurements? Yes!
- As long as
 - The signal is sparse (in some domain)
 - And the measurement matrix satisfies the RIP condition
- Decompression is quick (L1 minimization) (Candes-Tao& Donoho, 2006)
- Random projection works!

Example

(a) Original signal in the frequency domain $\hat{f}(w)$. It has 15 non-zero components in the frequency domain.

(b) Given m = 30 time-domain samples of f(t).

(c) Perfect recovery using ℓ_1 minimization.

Good news!

Many signals are sparse

Even more efficient algorithms

Can boost the performance by running iterative weighted L1 minimizations

joint work with A. Khajehnejad, W. Xu, and B. Hassibi

This is just the beginning!

Distributed and collaborative compressive sensing

Summary

There is a large gap between the current designs and the optimal design

Recent advances in information theory can help to bridge the gap Questions?