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Overview

o Point-to-point channel
» Information theory provides an abstraction

>>5=\§10g +SNR)
Misoaray
Claude Shannon

o Wireless network (1916-2001)
» Does information theory give us a similar picture? Not yet.




Basic model for wireless medium

o Key features of wireless medium
» Broadcast
» Interference
» High dynamic range of channel variations

o Basic PHY layer model: additive-Gaussian channel model




What 1s known?

1
Point to point: C =§log(1+SNR)
(Shannon 1948)
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State of the art

o Unfortunately, we don’t know the capacity of most other
Gaussian networks

o 3 decades of studying basic networks with 3 or 4 nodes
= Still the capacity is not known

Relay Tx1 O Rx1
< o/\o D TX2 @ Rx2
Relay Channel Interference channel

o How can we make progress?



Our approach

o Change the focus to approximation results
= with hard guarantees on the gap to optimality

o We develop simpler deterministic channel models
= De-emphasize the background noise
= Focus on the interaction between users’ signals

o Utilize them systematically to approximate the Gaussian
model



Methodology

AWGN Finite field

Determini:stic model




In this talk ...

o Introduce the deterministic channel model

o Apply it to some examples:
= Relay network

o Distributed compressive sensing



Deterministic Model . -Diggavi-Tse 2007
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Multiple access
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Broadcast
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Relay Networks
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Example: Two relays
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General deterministic relay networks (a-biggavi-Tse 2007)

o Theorem: Cutset bound is achievable,

C

relay

=C = mgin rank(G,_.)

» Our theorem is a generalization of Ford-Fulkerson
max-flow min-cut theorem
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Relaying scheme

Deterministic Gaussian
0 S encodes the message over o S encodes the message over
T symbol times T symbol times

o Each relay randomly maps the
received signal into a transmit
codeword

o D decodes the message

o Each relay,

= Quantizes the received signal
at noise level

= Randomly maps it into a
Gaussian codeword

. o D decodes the message
optimal

Yar - Xa1 Y1 -Xp

Ya2 - Xa2 Ypo-Xpo



Properties of the scheme

o Simple
» Quantize
» Map to a transmit codeword

0 Relays don’t need any channel information

o How does it perform?



Capacity of Gaussian relay networks (A -biggavi-Tse 2008

o Theorem: for any Gaussian relay network

C-x<C<C

- C is the cut-set upper bound on the capacity

- K is a constant that depends on size of the network, but not
the channel gains or SNR’s of the links

relays



Distributed Compressive
Sensing



Compressive sensing

o The measured data is very redundant!

---- Ear PPG.

o Almost all current systems:
= Sample at Nyquist rate
= Compression
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Compressive sensing (cont.)

o Can we recover by having only a few “linear” measurements?
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Compressive sensing (cont.)

o Can we recover by having only a few “linear” measurements? Yes!

o As long as
= The signal is sparse (in some domain)
= And the measurement matrix satisfies the RIP condition

0o Decompression is quick (L1 minimization) (Candes-Tao& Donoho, 2006)

o Random projection works!
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Example
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(a) Original signal in the frequency domain ) ) )
A (b) Given m = 30 time-domain samples of f(t).
f(w). It has 15 non-zero components in the

i

(c) Perfect recovery using /1 minimization.

frequency domain.




Good news!

o Many signals are sparse
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Even more efficient algorithms

o Can boost the performance by running iterative weighted L1
minimizations
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This is just the beginning!

o Distributed and collaborative compressive sensing
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Summary

o There is a large gap between the current designs and the
optimal design

0 Recent advances in information theory can help to bridge
the gap



Questions?



