

Recent Advances in Wireless Body Sensor Networks for Physiological Monitoring

Engineering in Medicine and Biology Society - Syracuse Chapter
The EMBS HealthTech Symposium
Spring 2010

Dr. Gill R. Tsouri

Communication Laboratory (CommLab)

Department of Electrical & Microelectronic Engineering

Kate Gleason College of Engineering

Rochester Institute of Technology (RIT)

Body Sensor Networks

Background

- Intercommunicating wireless body mounted biomedical sensors.
- Used to collect medical data and relay to remote caregiver.
- Future applications would include automatic drug delivery.
- Sensors and power sources are small and efficient.
- The main power consumer is the wireless transceiver.
- Major concerns: patient **privacy**, **safety** and **reliability**, prolonging sensor lifetime.

[Michigan Tech. Enterprise Program]

["Tiny Sensor Could Run for Years Harnessing Energy from Environment", Singularity Hub, February 24th, 2010]

[Y. M. Chi, S. R. Deiss and G. Cauwenberghs, "Non-contact Low Power EEG/ECG Electrode for High Density Wearable Biopotential Sensor Network", 6th International Workshop on Wearable and Implantable Body Sensor Networks, 2009]

Body Sensor Networks

Personal Status Monitoring (PSM)

- Shirt with easily embedded wireless enabled sensors.
- Collect sensor data to PSM which displays data and acts as a gateway to a remote caregiver.
- Potential applications:
 - Automated home monitoring.
 - Smart soldier outfit.
 - Patient monitoring in hospitals.
- A 9 months project in *CommLab* to design a body sensor network platform, sponsored by:

(with MSc student Adrian Sapio)

• A 3 year prototyping project is underway.

Project Description

Commlab

Design a reliable and secure wireless communication platform for Body Sensor Networks (BSNs) with ultra low-power consumption

- Data gathered from sensors to a PSM (up to range of 2m).
- PSM acts as gateway to remote caregiver.
- Sensors are non-redundant, simple and low-cost.
- Complexity resides in PSM.
- Mitigate interference from other devices and multiple BSNs.
- Support mobility.

Design novelties:

- Use *relaying of creeping-waves* to reduce power consumption.
- Apply wireless physical layer security to secure communication.

Outline

- System Requirements.
- System Design.
- Relaying of Creeping Waves.
- Wireless Physical Layer Security.
- Conclusion.

System Requirements

- Use 2.4-2.4835 GHz unlicensed ISM band
 - No licensing fee worldwide.
 - Small antennas.
 - Off-the shelf components.
- Meet FCC requirements
 - Spread Spectrum modulation.
 - Power emissions.
- Use centralized architecture
 - PSM is master, sensors are slaves.
- Provide data rates greater than 500kbps with bit error rates less than 10⁻⁶.
- Support multiple BSNs in close proximity.

- Maximize battery life
- Secure links
- Support mobility
- Mitigate Interference
 (Wireless USB, Bluetooth,
 Wireless LANs, ZigBee,
 cordless phones,
 CCTV cameras,
 Proprietary technologies...)

System Design

Data Collection & Transmission

System Design

Channelization & Data Rates

Channel	Center Frequency (MHz)	Frequency Range (MHz)
1	2406.5	2401.5 - 2411.5
2	2416.5	2411.5 - 2421.5
3	2426.5	2421.5 - 2431.5
4	2436.5	2431.5 - 2441.5
5	2446.5	2441.5 - 2451.5
6	2456.5	2451.5 - 2461.5
7	2466.5	2461.5 - 2471.5
8	2476.5	2471.5 - 2481.5

Chip Rate	10	Mcps
Symbol Rate	322.5	Ksps
Bit Rate	645.1	Kbps

Channels

- 8 channels each 10MHz wide.
- Raised Cosine pulse with roll off factor 0.22.

Spread Spectrum processing gain: 31

- ~31 orthogonal PANs.
- Interference energy reduction factor of 1/31.

Outline

- System Requirements.
- System Design.
- Relaying of Creeping Waves.
- Wireless Physical Layer Security.
- Conclusion.

Path Loss Model

Path loss measurements for a frequency of 2.4GHz

[J. Ryckaert, P. D. Doncker, R. Meys, A. de Le Hoye, and S. Donnay, "Channel model for wireless communication around human body", Electronic Letters, vol. 40, no. 9, pp. 543-544, Apr. 2004]

$$\overline{PL}(\theta) = \begin{cases} 39.5\theta - 13 \ [dB] & ; \quad 0.11\pi[rad] < \theta < 0.88\pi[rad] \\ 1.5\theta + 96 \ [dB] & ; \quad 0.88\pi[rad] < \theta < \pi[rad] \end{cases}$$

- Nice fit of model to sensor-embedded shirt.
- Variance of path-loss due to height is low.
- No past work on BSN design based on creeping waves.
- Single variable (phase).

Generic Link Budget

$$\overline{PL}(\theta) = \begin{cases}
39.5\theta - 13 [dB] & ; & 0.11\pi[rad] < \theta < 0.88\pi[rad] \\
1.5\theta + 96 [dB] & ; & 0.88\pi[rad] < \theta < \pi[rad]
\end{cases}$$

(4 standard deviations protection margin for height variance and interference range)

$$L_{CW}(\theta) = 39.5\theta + 13 \left[dB\right] \hspace{0.5cm} ; \hspace{0.5cm} 0 < \theta < \pi [rad]$$

$$P_{tx}(\theta) = G_T + L_{cw}(\theta)$$

$$G_T = P_{rx} - G_{tx} - G_{rx} + L_{fm}$$

 $P_{tx}(\theta)$ = Transmitter power as function of the creeping angle.

 P_{rx} = Receiver sensitivity.

 G_{tx} = Transmitter antenna gain.

 G_{rx} = Receiver antenna gain.

 $L_{cw}(\theta)$ = Creeping wave path loss as function of the creeping angle.

 L_{fm} = Channel fade margin.

Specific Link Budget

- Worst-case temperature of 370° K.
- Spread Spectrum processing gain of 31.
- Off the shelf 2.4GHz components with **Noise Figure of 7 dB**.
- Achieve Bit Error Rate of 10-6.
- Use Differential Quadrature Phase Shift Keying (**DQPSK**) modulation.
- Use simple omni-directional dipole antennas with 0 dB gains.
- Make sure that 99% of multipath fading instances are below median signal level.

$$G_{\tau} = -67.89[dB]$$

Relaying of Creeping Waves Around Body

Required Transmit Power, for BER = 1e-6

- Break point for specific link budget is around 60°.
- Relaying before the breakpoint is justified despite the need for retransmission.

$$G_T = -67.89[dB]$$

Network Topologies

Performance Analysis

Gain in Network Lifetime

- **Network Lifetime** is defined as the time it takes a single network component to empty its power source.
- Dramatic improvement despite retransmissions.
- Gain increases as number of sensors increases.
- Gain has asymptotic behavior.
- For a full coverage topology (4 relay nodes) gain is $\mathbf{10^7}$ fold increase .

$$\begin{split} R_{NL} &= P_{\text{ex}} \left(\pi \frac{N_S}{N_S + 1} \right) - \left\{ P_{\text{ex}} \left(\frac{2\pi}{N_R + 2} \right) + 10 \log_{10} \left[\frac{N_S}{2} \left(1 - \frac{2}{N_R + 2} \right) \right] \right\} [dB] \\ P_{\text{ex}} (\theta) &= G_T + 39.5\theta \text{ [dB]}, \quad 0 < \theta < \pi \end{split}$$

Analytical results.

Performance Analysis

Gain in Average Energy per Bit

$$R_{EPB} = \frac{\binom{N_R}{2} + 1}{\sum_{i=0}^{N_R/2} \left\{ 10^{\binom{p_{tx}(\frac{\theta_R}{2})}{10}} + i \cdot 10^{\binom{p_{tx}(\theta_R)}{10}} \right\}}$$

- Average Energy per Bit is defined as the average energy that is required to reliably send and receive a single information bit.
- Dramatic improvement despite retransmissions.
- Gain increases as number of relay nodes increase.
- Gain has asymptotic behavior.
- For a full coverage topology (4 relay nodes) gain is ~40dB ⇔ 10⁴ fold decrease .
- Analytical results.

Outline

- System Requirements.
- System Design.
- Relaying of Creeping Waves.
- Wireless Physical Layer Security.
- Conclusion.

Wireless Physical Layer Security

Principle

- Existing security algorithms (DES, AES, Diffie-Hellman, etc.) offer sufficient security strength but require excessive system resources.
- Make use of three properties of the wireless channel:
 - Channel de-correlates in time.
 - Channel de-correlates in space.
 - Channel is reciprocal.
- Short term estimation of channel parameters is a **common secret**.
- Concept was not applied to BSNs before.

Wireless Physical Layer Security

Principle

- Quantize phase estimates to periodically refresh a symmetric key to be used with a simple stream cipher, while introducing negligible system overheads.
- Low cost *key refreshing* and simple *stream cipher* encryption replace "heavy" cryptography relying on complex algorithms and large pre-deployed key (e.g., **DES** with 128 bit key, **Diffie-Hellman** key distribution, **RSA** etc...).

EMBS HealthTech Symposium

Security

Key Refreshing Algorithm

Algorithm is embedded in the polling protocol and requires no overhead.

Baseband model for received symbol at correlator output:

$$r_i = A|h|e^{j\varphi_i}e^{j\alpha} + n_i$$

- 1. Sensor checks *polling* packet for Cyclic Redundancy Check (CRC) and proceeds when no error is present (this is almost always the case due to link budget).
- 2. Sensor removes information using decision feedback:

$$p_i = r_i e^{-j\varphi_i} = A|h|e^{j\alpha} + n_i e^{-j\varphi_i}$$

3. Sensor estimates phase using all symbols in packet (best possible estimator):

$$A|h|e^{j\alpha} \approx \frac{1}{N} \sum_{i=1}^{N} r_i \qquad \iff \qquad \widehat{\alpha} = \arctan\left(\frac{Im\{\sum_{i=1}^{N} r_i\}}{Re\{\sum_{i=1}^{N} r_i\}}\right)$$

4. Sensor quantizes channel phase estimate to generate k key bits.

$$\mathbf{k} = \left[\widehat{\alpha} \, \frac{2^k}{2\pi} \right]$$

- 5. PSM goes through 1-4 using the *response* packet it receives from the sensor.
- 6. Process is repeated $\left\lceil \frac{K}{k} \right\rceil$ times to generate a complete K bits key.
- 7. PSM and sensor authenticate new key by concatenated encryption of next polling.

Performance Analysis

Successful Key Establishment

EMBS HealthTech Symposium

Conclusion

- Relaying of creeping waves results in substantial gains when designing a reliable body sensor networks.
- Wireless Physical Layer Security coupled with stream ciphering is an attractive solution for securing a BSN with low overheads.

Conclusion

Publications

- G. R. Tsouri and A. Sapio, "Method of Securing Resource-Constrained Wireless Enabled Devices via Channel Randomness", *IEEE 28th International Conference on Consumer Electronics (ICCE)*, Jan. 2010.
- A. Sapio and G. R. Tsouri, "Ultra-Low Power Body Sensor Network for Wireless ECG", International Conference on Wearable and Implantable Body Sensor Networks (BSN), Jun. 2010.
- A. Sapio and G. R. Tsouri, "Robust and Efficient Networking of Body Sensors using Relaying of Creeping Waves in the Unlicensed 2.4GHz Band", submitted to ACM/Springer Trans. on Mobile Networks & Applications Special Issue on Ubiquitous Body Sensor Networks.

Prototyping to begin soon in CommLab