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Power Electronics
Expanding and Emerging Applications

Industry AutomationPowering IT

Alternative
and

Distributed
Energy

SystemsVehicular
Power
Systems

Most of the Emerging Electric Power Technologies presumeMost of the Emerging Electric Power Technologies presume
Active Dynamic Control of the Electric Energy Flow  (i.e. Active Dynamic Control of the Electric Energy Flow  (i.e. Require the Use of Power ElectronicsRequire the Use of Power Electronics)!)!
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Power Electronics Future?

• Essential for societal energy needs from:

Retinal Implant
J. G. Kassakian
IPEC, Niigata, 

2005

organ implants

carbon-free energy
to  …

Source: Shell Global Scenarios
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Electronic Focus
of New Electric Power Systems

Emerging and future power systems will have all sources and 
loads interfaced through power electronics converters: 

• IT Power: Portable, Server, Telecom, Data Center
• More-electric aircraft, All-electric ship, Hybrid-electric car, 
• Sustainable energy, Distributed generation, Future power grid

Focus on: Electronic Power Distribution Systems (EPDS) .

The major opportunities and challenges for synthesis 
and integration of these systems are in:

• High-density power converter integration; 
• System-oriented modeling and analysis;
• System architecture design and optimization;
• Power management, control, and protection.
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• Inefficient
• Expensive
• Unreliable

Very colorful patchwork 
inherited from last century!
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Barriers/Challenge

• Complexity of traditional power systems:
– Fully coupled dynamics of generation, distribution, and delivery.
– System stability is enabled by imposing an overwhelming, slow, 

electromechanical or electrochemical dynamics of the sources. 

• Local focus of power electronics:
– Concentrated on load dynamics
– Evolving focus on source dynamics (UPS, distributed generation, 

fuel cells, alternative energy sources)
– Until now, only “fixing the problems” of power distribution

Challenge: Reduce system cost, increase efficiency and 
availability by decoupling the dynamics of 
energy sources, distribution system, and loads 
through the use of power electronics.
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Power-Converter-Based Power 
Systems Example: A Notebook PC

LCD Bias
– 8 V

Backlight
800 V

Memory
1.8 V

Processor
0.7-1.7 V

Logic

I /O Disk
Drive

5 V  Bus3.3 V
Bus

Peripherals

12 V

12-16 V
Power 

Management Battery
90-260 V

50-60 Hz

19 V
Charger AC 

Adapter

Voltage 
Regulator

Voltage 
Regulator

CCFL 
Inverter

LCD 
Converter

LDO 
Regulator

Bus 
Converter

Bus 
Converter

Boost 
Converter

• Load converters: Meet dynamic energy requirements of the loads 

REDUCE
COST !

• Power Distribution Converters:
– Increase peak-power efficiency ⇔ Improve power density
– Increase light-load efficiency ⇔ Improve energy efficiency

• Source converters: Meet ac line standards; improve battery utilization
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More Electric Transportation

1. Variable frequency 
starter/generator

⇒ Eliminates Gearbox
2. Variable speed drives 

for ECS
⇒ Eliminates Pneumatics
3. High-frequency 

voltage step-up/down
⇒ Less Copper & Iron
4. Electrical actuation
⇒ Reduces Hydraulics

Similar approaches and advantages are being pursued in:
1. Rail systems and vehicles (for long time)
2. All-electric ships
3. Hybrid electric cars, trucks, and buses

All electrical energy processed 
through electronic converters

Dushan Boroyevich: Future Electronic Power Distribution Systems
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VariableVariable--speed doublyspeed doubly--fed wind turbinefed wind turbine
Direct gearDirect gear--less variableless variable--speed wind turbinespeed wind turbine

1. Eliminates gear box and need for doubly-fed 
induction generator

2. Simpler transformer structure

3. Fully decouples wind and grid dynamics

Wind Energy:
Evolution of Turbine Power Electronics
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Electronic Power Distribution System: 
Grid-interface for Offshore Wind Farms

AC Transmission for Offshore Energy HarvestingAC Transmission for Offshore Energy Harvesting

HVDC Transmission for Offshore Energy HarvestingHVDC Transmission for Offshore Energy Harvesting

Dushan Boroyevich: Future Electronic Power Distribution Systems
Keynote at PECon 2008, Johor Bahru, Malaysia, 1 December 2008



6

December 1, 2008 DB-10

Mixed
AC / DC 
Power

Distribution

6 A
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Transfer Switch
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60 A 60 A
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Transfer Switch

Battery
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CPES University Testbed: Hybrid Power 
System for Remote-site Datacom Centers

10 A

Cooling
1.5 kW

Hybrid Energy
Power Sources

Telecom and Computer
Loads with HVAC

Similar tradeoffs in terms of size, efficiency, 
and power density for all power converters.

Single Enclosure,
Self-Contained Unit
Peak-power
Efficiency
< 50 %  !
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Electronic Power Distribution System 
(EPDS): An Integrated Testbed

Servers

DC-DC

HV DC Distribution
300 V DC

Charger /
Discharger RectifierRectifier

HVAC

System impact 
evaluation of 
integrated:
• Active modules
• Passive modules
• Converters
• Loads and 
converters

• Reduce number 
of converters 
by 30%

• Eliminate 
switchgear 

• Improve 
availability

• Increase energy 
efficiency

Improved architectures:
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Characteristics of Future
Electronic Power Distribution Systems

• Power electronics converters are used for:
– Source interface
– Load interface (only “coffee makers” are still non-electronic loads?)
– Power flow control and energy management

• Advantages:
– High system controllability, flexibility, and responsiveness
– Increased availability
– Reduced size and weight
– Increased energy efficiency

• Issues:
– Subsystem interactions (power flow, power quality, EMI, thermal)
– Complexity (not an issue if dynamics is understood & decoupled)
– Reliability and lifetime (not protection)
– Cost (not an issue if system and/or energy costs are reduced)
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Synthesis of DC
Electronic Power Distribution Systems
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System Integration is significantly hampered by:
• Large number of different components 
• Many different manufacturers
• Lack of knowledge of internal converter structures
• Lack of information about internal converter parameters
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48 V 8 V

A commercial
60 W bus converter
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– modeling and experiments with commercial converters –
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Analysis of Stability, Power Quality, 
Power Management and Protection

Charger25 A

25 A

Battery

48 V DC Distribution

Minimum relevant EPDS example:
• Two sources
• Two loads
• DC distribution

Dushan Boroyevich: Future Electronic Power Distribution Systems
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Load 2 enters current limit

Source impedance becomes 
greater than load impedance

Small-signal instability with 
constant-power loads

System shut-down

Power Flow Control & Protection Simulation:
Classical System Transient Example

48 V dc bus
with 2% short-circuit
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1,000 μF 1,000 μF

48 V dc bus
with 2% short-circuit

impedancevo1 vo2
io1 io2

Const.
5 A

+

Battery

DC-DC
Converter

Charger /
Discharger

Load 1
Converter

PV

3 A
Load 2

Converter

33 A

25 A25 A

Power Flow Control & Protection Simulation:
Converter Controlled Distribution System
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Possible Advantages:
• NO excess energy storage for stability
• NO AC nor DC circuit breakers
• NO converter overrating by “>100% for 

1-2 sec for breaker clearing”
• NO overrating of wiring, contactors, …

for short-circuit currents >10x

Hence:
• Lower cost ?
• Higher efficiency ?
• Increased availability ?

Monitoring and Control
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Electronic Power Distribution Systems
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MTB Modeling of AC EPDS:
• More difficult due to time-varying nature of steady-state
• Large disconnect between system and converter modeling
• Use of average models in system analysis is uncommon
• “Constant-power loads” are being considered only recently 
• Small-signal frequency-domain modeling still in development

“Electronic”
only recently
in transportation 
and datacom centers.
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Stable Stable 

AC Subsystem Interaction Example
– small-signal and average modeling and simulation –
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AC Subsystem Interaction Example
– small-signal and average modeling and simulation –
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DC/AC

LV AC
Distribution

LV AC Bus Voltage

Advanced 
Shipboard Electric Power Systems

• Increase in negative impedance 
loads produces oscillations.

• Further increase in negative 
impedance loads produces 
instability.

Active 
Filter

Using active filter to introduce damping at higher frequencies 
decouples the load from source dynamics; thence:

reduces complexity and stabilizes network !

Dushan Boroyevich: Future Electronic Power Distribution Systems
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Converter Controlled AC Distribution System
Fault Handling: One-Phase-to-Ground Short
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Hypothetical Concepts

DOE: “GRID 2030” VISION EPRI: 2003 Electricity 
Technology Roadmap

• Dynamically decoupled (asynchronous), hierarchical grid
• Consider both AC and DC
• Gradual removal of synchronism 
• Start decoupling from both ends; 

– HVDC backbone ⇒ Regional DC interties
– Nanogrids ⇒ Microgrids

• Supplant Substations with “Electricity Routers” (“Smart Grid” isn’t it!)

Dushan Boroyevich: Future Electronic Power Distribution Systems
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An “Electricity Router”

+Energy 
Storage

Constant
Frequency AC
⇔ MV DC

Connection 
to Base Grid

MV DC
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HV DC

Local AC 
Microgrid

LV DC
⇒

MV DC
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US and Canada Electric Grid 

Four major independent 
asynchronous networks, 
tied together only by DC  
interconnections:

1. Eastern 
Interconnected 
Network

2. Quebec

3. Texas

4. Western 
Interconnected 
Network

Four major independent 
asynchronous networks, 
tied together only by DC  
interconnections:

1. Eastern 
Interconnected 
Network

2. Quebec

3. Texas

4. Western 
Interconnected 
Network
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Plans for New ASEAN Electric Grid 

???Peninsular Malaysia – Sarawak (Malaysia)132014600 MWACBatam (Indonesia) – Singapore9
???Thailand – Peninsular Malaysia122014600 MWDCSumatra (Indonesia) – Singapore 8

2007300 MWACSarawak (Malaysia) – W. Kalimantan (Indo.)112012700 MWDCPeninsular Malaysia – Singapore7
2019300 MWACSabah/Sarawak (Malaysia) – Brunei Daruss.102008600 MWDCPeninsular Malaysia – Sumatra (Indonesia)6

ASEAN Centre for Energy
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A Dream of 
Electronic Energy Network

that will supplant Electric Power Grid
to enable Carbon-Free Electricity by 2030

• All electricity could be generated carbon-free:
Hydro Wind Solar Nuclear

• Today’s electric power grid cannot handle this due to:
– No ability to absorb high % of distributed generation and storage
– No adequate long-distance energy transport
– No adequate energy storage

• Must use electronic networks for electric energy utilization!

• Save: bio fuels for some transportation 
fossil hydrocarbons for chemical products

Dushan Boroyevich: Future Electronic Power Distribution Systems
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Research Directions

1. Network Architectures
– Dynamically decoupled, hierarchically interconnected, smart,  

super-grid and a network of small-, mini-, micro-, and nano-grids,    
instead of single, constant-frequency ac, grid

– Distributed generation, storage, loads, and intelligence

2. Energy Transfer Protocols and Markets
– Technology for continuous control of all energy flows
– Enabling of efficient market mechanisms

3. Safety and Reliability
– Safety & protection
– Reliability & lifetime

4. Energy Storage (minutes, hours, days, seasons)

• Energy sources, HVDC, superconducting transmission, 
high-power electronic conversion, …

December 1, 2008 DB-33

Metrics of Success

• Peak power density
– Weight and volume (right-of-way, real estate, … , W/cm3, W/g)
– Related to investment cost

• Energy efficiency 
– High efficiency at light and full load or optimized over load-cycle
– Related to operating cost

• Life-cycle cost
– Based on life-cycle analysis
– Related to environmental and societal impact

• Reliability and Availability 
– Critical for economic and societal impact
– Related to risk-mitigation pricing

• Safety and Protection
– More design constraints than metrics of success
– Critical for acceptance by community and society
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Thank You
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