

Increasing Network Capability through a Review of Asset Ratings

Dr Darren Spoor Operations Technical Support TransGrid

Presented on the 14th Nov 2013 to the Joint Electrical Institutions Sydney - Engineers Australia, IEEE, IET

caring Venterprising Committed Collaborative

References:

Similar presentations:

🔊 caring | 🗱 enterprising | 🗹 committed | 🛃 collaborative

Overview

- Impact of Ratings in a Network
- Network Limitations in NSW
- Available improvements to Thermal Ratings
- Applications of Thermal Inertia:
 - Primary Equipment:
 - Secondary Equipment
- Improvements in Network Utilisation

🔊 caring | 🔆 enterprising | 🗹 committed | 🔁 collaborative

TransGrid's Network

- 12,800 kilometres of high voltage lines and cables,
- 94 transmission substations

The Current Climate

- Current Objectives
 - Minimising Capital Expenditure
 - Maintaining Customer Reliability
- This can be achieved through
 - Demand Management
 - Routine review of load forecasts
 - Post-contingent Load Transfers
 - A review of rating calculations
 - Short-time or real-time ratings

Financial Impact of Ratings

What Are Thermal Ratings?

- Normal Ratings
 - Allowable continuous current
- Contingency Ratings
 - Continuous current during lengthy emergencies.
 - Generally less conservative
- Short-Time Ratings
 - Current rating for a short duration (5, 10, 15 min)
- Real-Time Ratings
 - Current rating for the ambient conditions and prior loading

Coordination of Thermal Ratings

 Substation equipment should not restrict the use of short-time or real-time transformer or transmission line ratings

Coordination of Thermal Ratings

 Substation equipment should not restrict the use of short-time or real-time transformer or transmission line ratings

- Technical Operating Envelope can be Affected by:
 - Thermal ratings
 - Allowable voltage thresholds
 - System dynamics

- Technical Operating Envelope can be Affected by:
 - Thermal ratings
 - Allowable voltage thresholds
 - System dynamics

- Technical Operating Envelope can be Affected by:
 - Thermal ratings
 - Allowable voltage thresholds

2

Time (s)

System dynamics

0 sec

- Market Constraints
 - Thermal Limits
 - Voltage Limits
 - Transient Stability Limits
 - Oscillatory Stability Limits
- Thermal ratings are important, but are not always the limiting factor

- Market Constraints
 - Thermal Limits
 - Voltage Limits
 - Transient Stability Limits
 - Oscillatory Stability Limits
- Additional limits apply during planned outages

Distribution System Operating Envelope

- **Distribution System Operating** Envelope is Usually Affected by:
 - Fault Ratings

100000

80000

60000

-20000

-40000

-60000

0.00

Relay

0.01

Distribution System Operating Envelope

- **Distribution System Operating** Envelope is Usually Affected by:
 - Thermal ratings
 - Diversified peak demands
 - Application of planning criteria
 - Voltage Angles between BSP's

 $\delta_{\rm B}$ Х

А

В

С

Thermal Equations:

$$Load \approx A.L_{PRE} + B.\delta + C$$
$$\delta = (\delta_A - \delta_B) \approx \frac{180}{\pi} \left[\frac{X P_X}{100 V_A V_B} \right]$$

is the voltage angle at busbar A is the voltage angle at busbar B is the reactance of the line P_{X} is the power flow on the line V_A is the HV voltage at busbar A V_B is the HV voltage at busbar B Load is the estimated (post contingent) loading Lpre is the pre contingent loading in the subsystem is a regression coefficient is a regression coefficient is a constant

Distribution System Operating Envelope

- Distribution System Operating Envelope is Usually Affected by:
 - Allowable voltage thresholds
 - 230V ±10%
 - IEC 60038 and AS61000.3.100
 - Transformer Tapping Ranges
 - Step voltage changes
 - AS61000.3.100
 - Temporary over-voltage limits

Corrective Actions

- Voltage Limits:
 - Network augmentation
 - Reactive plant
 - LV and MV voltage regulators
- Transient Stability Limits
 - Improved Fault clearing times
 - Braking resistors
 - Series capacitors
 - Generator control systems
- Oscillatory Stability Limits
 - Generator control systems
 - Tuning Power System Stabilisers
- Thermal Limits
 - Application of short-time ratings
 - Review of underlying assumptions

M.L. Shelton, et al "Bonneville Power Administration 1400-MW Braking Resistor" IEEE PES Summer Meeting & Energy Resources Conf., Anaheim, Cal., July 1974

Corrective Actions

- Voltage Limits:
 - Network augmentation
 - Reactive plant
 - LV and MV voltage regulators
- Transient Stability Limits
 - Improved Fault clearing times
 - Braking resistors
 - Series capacitor
 - Generator control systems
- Oscillatory Stability Limits
 - Generator control systems
 - Tuning Power System Stabilisers
- Thermal Limits
 - Application of short-time ratings
 - Review of underlying assumptions

These can done at minimal cost

Common Thermal Limitations

- Primary Equipment:
 - Transformers
 - Overhead Lines
 - Underground Cables
- Terminal Equipment
 - Busbars
 - Terminal Palms
 - Circuit Breakers
 - Isolators
 - Wave Traps
 - CT Primary Windings
- Secondary Equipment
 - Protection circuits
 - Metering Circuits
 - Indication Circuits

Large Thermal Time Constants

Common Thermal Limitations

• Primary Equipment:

- Transformers
- Overhead Lines
- Underground Cables

Terminal Equipment

- Busbars
- Terminal Palms
- Circuit Breakers
- Isolators
- Wave Traps
- CT Primary Windings
- Secondary Equipment
 - Protection circuits
 - Metering Circuits
 - Indication Circuits

Short Thermal Time Constants

Common Thermal Limitations

- Primary Equipment:
 - Transformers
 - Overhead Lines
 - Underground Cables
- Terminal Equipment
 - Busbars
 - Terminal Palms
 - Circuit Breakers
 - Isolators
 - Wave Traps
 - CT Primary Windings
- Secondary Equipment
 - Protection circuits
 - Metering Circuits
 - Indication Circuits

Some Limits can be waived

Application of Short-Time Ratings

Post Contingent Transfers:

- There is a planning requirement for two projects
- These could be avoided by utilising the short-time ratings
- 50 MW could be transferred back to Substation A after a contingency
- Several years worth of capital expenditure deferral

Application of Short-Time Ratings

High Voltage Connections:

- There is a 330kV dropper and HV connection limitation
- A five-minute rating of 320 MVA has been derived
- This provides the opportunity to place the third transformer on load after another transformer trip.
- Another approach is to consider the real-time fault levels at this site

Application of Short-Time Ratings

Alleviating Market Impacts:

- A 132kV sub-network with a peak demand of 360MW
- A regulated interconnector can appear as a load of 120MW
- A contingent trip of a transformer can result in loads of 480 MW through the remaining transformer.
- A four-hour rating of 511MVA applies for these transformers

Coordination of Thermal Ratings

- An example of poor coordination:
 - A substation provides a summer day rating of 1430MVA
 - This matches the contingency rating of the 330kV lines
 - This design failed to consider the available short-time ratings

Coordination of Thermal Ratings

- Transmission line bays should be capable of carrying loads greater than 150% of the transmission line normal rating.
- Transformer bays should be designed to carry loads of at least 130% of the transformer normal rating

Transformer Short-Time Ratings

Transformer Short-Time Ratings

Transformer Short-Time Ratings

Transformer Thermal Inertia

Transformer thermal inertia

- Is quite large and constant
- The effective time constants depend on how quickly heat is removed from the transformer
- Consider a Bulk Supply Point:
 - Four 375 MVA transformers
 - A planned or forced outage of one transformer
 - Substation loading of 1000 MW

Transformer Thermal Inertia

A Transformer Trip

- The next credible contingency
- Transformers at 133% of rating
- Adequate time to transfer load

Cable Thermal Inertia

Electrical Analogue

- Heat sources are current sources (IEC 60287)
- Voltages correspond with temperatures
- Higher T_R exists outside the trench

Cable Thermal Inertia

Cable Thermal Inertia

Cable Thermal Inertia

TransGrid

Transmission Line Thermal Inertia

12

Transmission Line Thermal Inertia

Overhead Transmission Lines

- We are interested in low ratings
- This corresponds with low wind speeds
- Relatively Large Thermal Time Constants

 20_{1}

18

16

14

12

10

8

6

4

20

Thermal Time Constant (mir)

Wind Speed (m/s)

Transmission Line Thermal Inertia

Wind Speed Variability

- A simply conductor analogy is an old steam engine:
- The engine transfers power once (or twice) a cycle with each stroke
- The machine can maintain a constant angular speed if the inertia is high
- Variations in mechanical load do not significantly affect the angular speed

Transmission Line Thermal Inertia

Radiation

Transmission Line Thermal Inertia

Wind Speed Variability

- Wind speed is not uniform
- High variability in magnitude and direction

Transmission Line Thermal Inertia

Wind Speed Variability

- Thermal inertia of the conductor smooths these variations
- It is sometimes possible to apply single measurements over a large geographic area
- Many references refer to a 30km range over uniform terrain

http://www.bom.gov.au/marine

Transmission Line Thermal Inertia

Wind Speed Measurements

- Taken at conductor elevations
- Hardware installed in accessible and locations for maintenance

TransGrid

Transmission Line Thermal Inertia

Wind Speed Measurements

- Taken at conductor elevations
- Hardware installed in accessible and locations for maintenance

Transmission Line Thermal Inertia

Use of Short-Time Ratings

Can provide the most benefit during low or moderate wind speeds

TransGrid

Transmission Line Thermal Inertia

- Four Year <u>Minimum</u> Effective Wind Speeds
 - Good short-time ratings are available

Transmission Line Thermal Inertia

High Ambient Temperatures

Good wind speeds during periods of high demand

Secondary Equipment

Current Transformers

- Usually have a primary rating of between 500 3000 A
- Often have a thermal rating of 2 A in the secondary windings

Secondary Equipment

Protection Circuits

- The thermal rating of protection relays is rarely a limitation
- Protection secondary limit is normally 2A.
- Limits associated with distance relays:
 - Zone 3 limits can be alleviated by <u>changing relay type or relay angle</u>
 - Thermal limits can be resolved using interposing transformers

Secondary Equipment

Metering Circuits

- Revenue Metering
 - The normal rating is often 1.2A
 - Contingency rating is 2A
 - This assumes that a small loss of accuracy can be accepted in an emergency
 - backup metering used to correct errors

- Indication Metering
 - The normal rating is often taken as 1.25A
 - A contingency rating of 2A can be used <u>if</u> <u>indication is available elsewhere</u>

Secondary Equipment

Indication Transducers

- The normal rating is often taken as 1.25A
- The 1.25 factor is also to avoid CT saturation leading to high harmonic distortion.
- This ensures that correct indication is available for operator action in an emergency.

TransGrid

A contingency rating of 2A can be used <u>if indication is available elsewhere</u>

Conclusion

- Careful application of short-time ratings can defer expenditure
- Many thermal ratings are based on conservative parameters
- A detailed review of these parameters can increase utilisation

Useful References:

Busbars

- R.T.Coneybeer, et al "Steady-State and Transient Ampacity of Busbar", IEEE Trans. on Power Delivery, Vol.9, No.4, 1994 **Transformers**
- IEEE Std C57.91 2011 "IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators"
- AS 2374.7-1997 "Loading Guide for oil-immersed power transformers"
- Tech Report 393 "Thermal Performance of Transformers" CIGRE WG A2.24, Oct 2009
- IEC 60076-7 "Power transformers: Loading guide for oil-immersed power transformers"

Bare Overhead Conductors

- V. Morgan "The thermal rating of overhead line conductors part 1 (the thermal model)" Electric Power Systems Research, 5 (1982) 119 139
- Tech Report 207 "Thermal Behaviour of Overhead Conductors" CIGRE WG 22.12, Aug 2002
- "TNSP Operational Line Ratings". TNSP Co-operative Charter Plant Rating Working Group. (2009).
- IEEE Std 738-2006, "IEEE Standard for Calculating the Current-Temperature of Bare Overhead Conductors"
- "Description of state of the art methods to determine thermal rating of lines in real-time and their application in optimising power" CIGRE SC22 WG12 Electrical Aspects of Overhead lines, paper 22-204, Session 2000
- V. Morgan "Rating of Bare Overhead Conductors for Intermittent and Cyclic Currents" Proc. IEE, Vol. 116, No. 8, Aug 1969
- V. Morgan. "Effect of Elevated Temperature Operation on the Tensile Strength of Overhead Conductors." IEEE Trans. On Power Delivery, Vol. 11, No. 1, Jan 1996.

Terminals and HV Connections

- AS 62271.301—2005 "High voltage switchgear and controlgear Part 301: Dimensional standardization of terminals"
- IEC60943 "Guidance concerning the permissible temperature rise for parts of electrical equipment, in particular for terminals" Edition 2.1, March 2009
- IEC 60287 Calculation of the current rating. Second Edition, Dec 2006
- AS 62271.1-2012 "High-Voltage Switchgear and Controlgear Common Specifications"
- IEC 60949 "Calculation of Thermally Permissible Short Circuit Currents, Taking into Account Non Adiabatic Heating Effects." 1988.

Earthing Connections

- S. R. Lambert. "Minimum Shield Wire Size Fault Current Considerations." IEEE Trans. On Power Apparatus and Systems, Vol. PAS-102, No. 3, March 1983.
- IEEE Std. 80-2000. "IEEE Guide for Safety in AC Substation Grounding."
- Cigre Brochure 006 "The Mechanical Effects of Short Circuit Currents in Open Air Substations." 1987.
- ENA EG(0) Power Systems Earthing Guide Part 1 Management Principles, February 2010.

Fault Ratings

- IEC 60909 Short Circuit Currents in AC Systems. First Edition 2001.
- G. J. Anders Probability Concepts in Electric Power Systems. Wiley. 1990. ISBN: 0-471-50229-4.

Voltage Ratings

AS61000.3.100 – EMC limits – Steady State Voltage Limits in Public Electricity Systems

Questions?

🔊 caring | 🗱 enterprising | 🗹 committed | 🛃 collaborative