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Introduction

m Linear image processing algorithms
have received considerable attention
during the last several decades

m They are easy to implement and are
computationally less intensive

m The basic hypotheses for the
development of linear models and linear

- signal processing algorithms are

I stationarity and Gaussianity




Introduction

m To achieve improved performance,
algorithms must take into account

— nonlinear effects in the human visual
system

— nonlinear behavior of the image acquisition
systems
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Introduction

m The hypotheses of stationarity and
Gaussianity do not hold in the case of
Image signals

m Linear filtering methods applied to an

Impulse-noise-corrupted image blur
sharp edges and remove fine details

m Linear algorithms are not able to
Bl remove signal-dependent or
' multiplicative noise Iin images
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Introduction

m This has led to a growing interest in the
development of nonlinear image
processing methods in recent years

m Due to rapidly decreasing cost of
computing, image storage, image
acquisition, and display, complex
nonlinear image processing algorithms
have also become more practical for
Implementation



Introduction

m Types of Nonlinear Algorithms:
— Homomorphic filters
— Nonlinear mean filters
— Morphological filters
— Order statistic filters
— Polynomial filters
— Fuzzy filters
0 — Nonlinear partial differential equation

I based filters




Discrete-Time Volterra Filters

he Volterra filter is a special case of
the polynomial filters

m It Is based upon an input-output relation
expressed in the form of a truncated
Volterra series

m Simplest types are the quadratic filters
corresponding to the first nonlinear term
In the Volterra expansion
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Discrete-Time Volterra Filters

m Two attractive and important properties
of the Volterra filters, and in particular,
of the quadratic filters
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Discrete-Time Volterra
Operators

First Property

m Output depends linearly on the
coefficients of the filter itself

m IS used to analyze the behavior of the
filters, find new realizations, derive
adaptive algorithms, etc.




Discrete-Time Volterra
Operators

Second Property

m Results from the representation of the
nonlinearity by means of multi-
I dimensional operators working on the

products of input samples

m Allows for the frequency domain
mm  description of the filters by means of
I multi-dimensional convolution




Discrete-Time Volterra
Operators

m The general form of the Volterra filter Is
described by the input-output relation:

yinl=hy + 3 Ay (x[n])
k=1

m y[n] and x|[n] are, respectively, the
output and input sequences, and

h(x[n]) = _%"'_ iioﬁk[il,---,ik]'x[n —h ] x[n—1 ]
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Discrete-Time Volterra
Operators

m In the expression for f (x[n]), the
discrete variables ,...,I, are usually
defined on a causal support

m hy Is an offset term
I m h.[i;] is the impulse response of a

Inear FIR filter

m hJiy,...i,] can be considered as a
Bl generalized k-th order impulse response
. characterizing the nonlinear behavior




1-D Quadratic Volterra Filters

Infinite Memory Quadratic Filters
m Input-output relation

i JI = ho-+ Fy(X[NT) + ()

—hg+ 3 hi[is]- X[N—is]

i]_:O

+ § | > hofigip]- X —ig]- X[n ]
=0 1,=0




1-D Quadratic Volterra Filters

Finite Memory Quadratic Filters
m Input-output relation

[ "

I yInl=ho+ X hyfig-x[n-ii
N,—-1 N3-1

h X[n—1
B S oLy 12 ]- X[n—1q]- x[n—15]

|1—O |2 =0



1-D Quadratic Volterra Filters

Transform-Domain Representation
m Convolution form of quadratic term

yinl=ho(x[n))= ¥ Sholis,in]- X[n—ig]- X[ i, ]

i,=0 i,=0
can be expressed as

wlng,ny] = § § Noli3,15]-V[Ng =13, N5 —14]
11=0 1,=0

S R b



S R b

1-D Quadratic Volterra Filters

m For
V[N =1, N =] =Xx[n—11]- X[n—1,]
and

N{=Ny,=n
so that
y[n] =w[n,n]



1-D Quadratic Volterra Filters

m The two-dimensional (2-D) Fourier
transform of h,[n;,ny] given by

: _ 00 o0 _ _
H2(ejm11ej(”2) = Z th[kl, kz]e_lwlkle—lﬁ)zkz
k]_:—OO k2=—OO

IS defined as the frequency response
of the quadratic Volterra filter
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1-D Quadratic Volterra Filters

m The properties of the 2-D Fourier
transform can be used to characterize
the quadratic kernel hy[iy,15]

m For example, the expression for y[n] can
be derived using the inverse 2-D Fourier

transform
1/2 1/2 ot o

yinl= [ [ Hyo(e!™,e!“™2)X ()X (f,)-
~1/2-1/2
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1-D Quadratic Volterra Filters

m Where X(f) is the Fourier transform of
X[n]

m Note: If the input to a quadratic filter is a

sinusoid, i.e. if x[n]= Ael?™a"
then the outputis |
yIn] = A2 Hy[e12a 1272 Jg 1272 Tan

B \which is still a sinusoid but with a

. frequency 2f,




A R b

1-D Quadratic Volterra Filters

m If the input Is a sum of two sinusoids
with frequencies f; and fy, |, then the
output contains three sinusoids of
frequencies 2f,, 2f, , and f, + f;
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1-D Quadratic Volterra Filters

m As every kernel can be transformed into
a symmetrical form, we restrict our
attention here to Volterra filters with a
symmetric impulse response, i.e.,

hz[nl,nz] hz[nz,nl]



Teager's 1-D Operator

m An example of the quadratic Volterra
filter is the Teager’'s operator

y[n]= x2[n]— x[n—=1]x[n +1]

I m Introduced by Kaiser to calculate the
energy y[n] of a one-dimensional (1-D)

B signal xX[n]




Teager's 1-D Operator

m If the input is x[n] = Acos(mw,n+¢) , then
the Teager’s operator generates an
B it

y[n] = A% cos?(wgn + &)

I — A?cos(mg (N +1) + d)cos(wy (N —1) + )
= A%sin?(m,) = A%03

for small values of o,




Teager's 1-D Operator

hus, for sinusoidal inputs, the Teager
operator develops a constant output
which Is an estimate of the physical
energy of a pendulum oscillating with a
frequency o, and an amplitude A




Teager's 1-D Operator

m Under some mild conditions, the 1-D
Teager operator can be approximately
represented as

I y[n] = py - (2X[n] - x[n—1] - x[n +1])

m In the above
Uy = %(x[n ~1]+ x[n]+ x[n +1))

0 Is the local mean
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Teager's 1-D Operator

and the quantity
2X[n]—Xx[n—=1]—x[n+1]

IS the Laplacian operator which is an

FIR highpass filter

m Thus, the 1-D Teager operator behaves
as a mean-weighted highpass filter
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Teager's 1-D Operator

he 1-D Volterra filters that can be
represented approximately as a local-
mean-weighted highpass filter satisfy
the following three conditions:
(1) Hp(el0,e10) =33 hy[ky, ky] =0

k1 Kz
(2) Hz(ej(ﬂl’ejo): H2(ejo,ej®2)
and




Teager's 1-D Operator

(3) kaZ ho[ky, Ko 1(holky, kgl + holky, k3)

- Ki=Ks

+ 33> ho[ky, ko(ho[ky, ka]+ holky, ks]) = 0
Ky Ko K3
k%K, k2¢k3
m A large class of such filters satisfies the
above three conditions




Teager's 1-D Operator

m The frequency-domain input-output
relation of filters belonging to this class
can be expressed as:

I Y (e1°) ~ 2p, - Ha (e10,019) X (1)

m Y (eJ®) and X (eJ®) denote, respectively,
the 1-D Fourier transforms of the output
mm Y[n] and the input x[n]
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Teager's 1-D Operator

m If H,(el® el%) is a highpass filter, then
the quadratic Volterra filter given by

yinl= 2. 2 Mafky, ko IX[n —k¢]x[n—k;]
ki =—00 Ky =—00

satisfying the three conditions stated

earlier can be approximated as a local-

mean-weighted highpass filter



IS an example of suc

m It maps sinusoidal In
outputs

Teager's 1-D Operator

he 1-D Teager operator
y[n] = x2[n]—x[n—=1]x[n +1]

N a filter

DUtS to constant

m Every filter belonging to the class of

Bl [ocal-mean-weighted highpass filters
I has the above property
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2-D Teager Operator

m A 2-D extension of the Teager operator
IS obtained by applying the filtering

operation

y[n] = x2[n]— x[n—1]x[n +1]
along both the vertical and horizontal

directions:

y[m, n]=2x2[m,n]—x[m —1,n]x[m+1,n]

—X[m,n=1]x[m,n+1]



2-D Teager Operator

m Another 2-D extension is obtained by
applying the 1-D operator along the two
diagonal directions

y[m,n]=2x%[m,n]—x[m-1,n+1x[m+1,n—1]
—X[m-1Ln-1]x[m+1n+1]
e

Ht
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2-D Teager Operator

m Both of the above two 2-D quadratic
filters can be approximated as a local-
mean-weighted highpass 2-D filter

m The general class of 2-D quadratic
Volterra filters that can be
approximately represented as a mean-
weighted highpass filter is characterized
by three conditions similar to that
satisfied by the 1-D Teager operator




2-D filters have been developed

m Another member of this class, for
example, is the filter defined by

2-D Teager Operator
m Based on this analysis, a number of
other local-mean-weighted highpass
]

y[m,n] =3x2[m, n]—%x[m +1,n+1]x[m—-1,n—-1]
—;x[m +1,n=1]x[m—-1,n+1]

. —X[m+1n]xIm-1,n]—-x[m,n+1]x[m,n-1]



Image Processing
Applications

m The mean-weighted highpass filtering
property of the 2-D Teager filters has
been exploited in developing a number
of Image processing applications

m We present next four specific
applications




Contrast Enhancement

m The conceptually simple unsharp

masking approach is a widely used
Image contrast enhancement method

m Based on the addition of an amplitude-

scaled linear highpass filtered version of
the image to the original image

X[m, n] L

Highpass
Filter

& y[m, n]
AR
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Contrast Enhancement

m A commonly used linear highpass filter
IS the Laplacian operator:

y[ng, no] =4x[ng, na] = XN —1,na] = x[ng +1,n5]
—X[ny, Ny =1]=X[Ny, No +1]
m Ilts main advantage is computational
simplicity




A R b

Contrast Enhancement

m The highpass filter enhances those
portions of the image that contains
mostly high frequency information, such
as edges and textured regions

m Often yields visually pleasing results by
utilizing an effect called simultaneous
contrast

m The perceptual impression is improved
because the image appears sharper
and better defined



Contrast Enhancement

m Apparent problem of this technique is
that it does not discriminate between
actual image information and noise

m Thus, noise Is enhanced as well

I m Unfortunately, visible noise tends to be
mostly in the medium to high frequency

i range




Contrast Enhancement

m The contrast sensitivity function (CSF)
of the human visual system (HVS)
shows that the eye (and the higher level

I processing system in the visual cortex)

IS less sensitive to low frequencies

m To eliminate the noise enhancement
o problem we need to make use of

I Weber’'s law




Contrast Enhancement

m A visual phenomenon according to
which the difference in the perceived
brightness of neighboring regions
depends on the sharpness of the
transition occurring at edges




Contrast Enhancement

m We modify the unsharp masking
method such that the image
enhancement Is dependent on the local

average pixel intensity
I m In bright regions we can enhance the
Image more because noise and other
gray level fluctuations are much less

= o
visible




Contrast Enhancement

m On the other hand, in darker regions we
want to suppress the enhancement
process since it might deteriorate image
quality

m This simple idea indicates the need for

a highpass filter that depends on local
mean:

H(el®) oc H high (€)Y (local mean)
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Contrast Enhancement

m Improvement in the visual quality of the
Image obtained using a nonlinear
unsharp masking approach in which
the linear highpass filter is replaced with
a 2-D Teager operator

m The filter output depends on the local
background brightness, and as a resullt,
It follows Weber's Law
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Contrast Enhancement

Original image Enhanced image




Contrast Enhancement

m Outputs of the Teager and the
Laplacian filters are shown below

Teager filter output Laplacian filter output




Contrast Enhancement

Original Contrast Enhanced
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Contrast Enhancement

m The Laplcian filter output shows a
uniform response to edges independent
of background intensity

m The Teager filter output Is weaker In
darker regions (e.g., the darker areas of
the roof) and stronger in brighter areas
(e.g., the bright wall)




Impulse Noise Removal

m Goal: To suppress the impulse noise
while preserving the edges and the
details

m A number of nonlinear methods have
been advanced for impulse noise

removal
mm ® Among these, the most common is the

I median filtering



Impulse Noise Removal

m Median filtering is computationally
efficient and does suppress impulse-
corrupted pixels effectively

m In median filtering, whether a pixel is
I corrupted by impulse noise or not, It IS

replaced by its local median within a
window

mm " Thus, median filtering not only removes
the impulse noise but also introduces
I distortion
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Impulse Noise Removal

m A tradeoff needs to be made between
the suppression of noise and the
preservation of details and edges

m For effective noise suppression in highly
corrupted images, median filtering with
a large window Is required

m Large window Increases computational
complexity while introducing
unacceptable visible degradation in the
filtered image




noise from highly corrupted image while
preserving edges and fine detalls

m First, a 2-D Teager operator Is used to
detect the locations of the impulse noise
corrupted pixels

m Then a selectively chosen local mean
operator Is used to estimate the original

Impulse Noise Removal
m A detection-estimation-based approach
has been developed to remove impulse
]
I value of the corrupted pixel



Impulse Noise Removal

m Let x[m,n] denote the current pixel of an
Impulse-corrupted image with y[m,n]
denoting the output of the 2-D Teager
operator

mIf
ylmun|>T

where T Is a suitably chosen threshold
- value, then x[m,n] is considered to be a

I pixel corrupted by a positive impulse




Impulse Noise Removal

m The corrupted is replaced by the
average value of the uncorrupted pixels
within the window (typically, 3x3), called
the selective local mean

m T0 detect pixels corrupted by a negative
iImpulse, a complement of the input
Image Is first generated according to

X'[m,n] =B —x[m,n]

where B Is the maximum gray value in
the dynamic range
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X'[m,n]
m The above method does work
effectively In most cases

m Figure on next slide shows an original
uncorrupted image and the noisy
Image corrupted with 20% positive

Impulse Noise Removal
m The Teager operator is next applied to
detect the positive impulse corrupted Iin
]
. Impulse noise



Original Noise corrupted




Impulse Noise Removal

m Figures below shows the images
obtained using median filters with a
_3x3window and_a 5x5 window




Impulse Noise Removal

m Figures below show the images
obtained applying the Teager filter
based methods

A R D e

Teager filter Two-pass Teager filter



Impulse Noise Removal

m There are two cases, where the 2-D
Teager operator fails to detect the noisy
pixels

m Case 1: When there Is a group of
Impulse corrupted pixels matching the
structure of the 2-D nonlinear operator,
l.e., a crossing of the horizontal and

vertical directions




Impulse Noise Removal

m Case 2: When the positive noisy pixels
are located in the white areas, or
negative noisy pixels are located in the
dark areas

m To solve the problem with the first case,
a joint-structure 2-D nonlinear operator
has been employed




Impulse Noise Removal

m Here, to detect a positive impulse noise,
the following nonlinear operator Is used:
ylm,n]=

max{y;[m,n], yo[m,n], ys[m,n], y4[m,n]}

m In the above, y;[m,n], 1=1, 2, 3, 4, are
the outputs of four different 2-D
. guadratic operators defined by




Impulse Noise Removal

yi[m, n] = 2x%[m,n]—x[m—1,n]- x[m+1,n]

—X[m,n=1]- Xx[m,n+1]

yo[m,n]=2x%[m,n]—X[m—-1,n=1]-x[m +1,n+1]
—X[m+1n-1]-xfm-1,n+1]

ya[m,n] = 2x2[m,n]—x[m—2,n]-x[m+2,n]

—X[m,n—=2]-x[m,n+ 2]

ya[m,n]=2x2[m,n]
—X[m-2,n-2]-X[m+2,n+2]
—X[m+2,n=-2]-xIm—-2,n+ 2]
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Impulse Noise Removal

0 solve the problem in the second
case, the following nonlinear operator is
used:

Ym[m,n]=(apg +bpy +c)- y[m,n]

where Ly IS the normalized local mean
defined within a3x3 window and

B y[m,n]=
. max{y;[m,n], yo[m,n], yz[m,n], y,[m,n]}




Impulse Noise Removal

m Noisy pixel corrupted by a positive
Impulse Is detected by comparing the
value of yu[m,n] with respect to a given
threshold

m The modified operator can also be used
to detect noisy pixels corrupted by a
negative impulse by applying them to
the complementary image x'[m, n]
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Impulse Noise Removal

m Application of this modified approach
has been found to provide improved
performance in comparison to traditional
median filtering-based methods

m Figure on next slide shows the image
obtained using the improved detection-
estimation method
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Impulse Noise Removal

Improved Teager filter



Image Interpolation

m Image zooming is usually implemented
INn two steps

m First the image Is up-sampled by an
Integer factor M, in both the horizontal
and the vertical directions

m Up-sampling inserts (M-1) zero-valued

pixels among each consecutive pairs of

nixels
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Image Interpolation

m More appropriate values of these new
pixels are obtained using some type of
Interpolation method Iin the second step

m Commonly used interpolation methods
are the bilinear transformation or splines
which tend to introduce artifacts in the
zoomed version that degrade the visual

i guality of the image




Image Interpolation

m A more effective approach, based on
the use of the 2-D Teager operators,
adapts to local characteristics of the

I image while enhancing the quality

m The adaptive technigue can better
Incorporate properties of human visual

system (HVS) and yields more pleasing
results




x[m,n]
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Image Interpolation

m Figure below shows the block diagram
of the edge-enhanced zooming method

R T 59 Adaptive
’ interpolation
L]
.| Orientation/ | _______ :
"| classification )
Nonlinear T 29 Adaptive Line
edge extraction ’ interpolation thinning

ylm,n]
v




Image Interpolation

m In the top branch, the input image Is
first up-sampled by a factor of 2 in both
horizontal and vertical directions

m Then, the missing samples are found
I using an adaptive interpolation

m Bottom branch extracts perceptually
Important edge and texture information
I using the quadratic Volterra filter




Image Interpolation

m The quadratic Voletrra filter used Is
- y[m, n] =3x2[m,n]—§x[m +1,n+1]x[m—-1,n-1]
—%x[m +1,n=1]x[m—-1,n+1]

I —X[m+1n]xIm-1,n]—x[m,n+1]x[m,n-1]

m As mentioned eatrlier, this filter extracts
and enhances fewer edges in the darker
Bl portion of the image




Image Interpolation

m Also, noise Is amplified to a lesser
degree in these darker areas

m An important iIssue, because due to
Weber’s law, noise is more visible in the
darker areas than in the bright portions

m As a result, edges in the zoomed image
are enhanced without generating
I perceptually significant noise
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Image Interpolation

m Note that the overall structure follows
the simple idea of unsharp masking

m It yields a sharper output image,
because the high-frequency
components are emphasized by adding
a fraction of the lower branch output
back to the zoomed image




Image Interpolation

m The proposed method adapts to local
edge and texture orientation and uses
several interpolation filters instead of

each direction

m Method can be extended to other
- factors

only one
I m We consider zooming by factors of 2 In




A R D e

Image Interpolation

m Consider the figure below where the
filled circles represent original pixels
and the empty circles represent the
zero-valued pixels obtained after up-
sampling

@ O e O e O

0O O O O o o

Py p
e o o<s o |
o o o%
p2o/o(: 0O e O P3

0O O O O o o



Image Interpolation

m Objective of interpolation is to replace
these zero-valued samples with
appropriate values

m For example, we must estimate the
values of pixels py, p,, and psfrom the
iInformation given in the local
neighborhood
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Image Interpolation

m The local neighborhood of pjis
classified into one of 3 categories:
constant, oriented or irregular

m “Constant” means without clear features

m “Oriented” block shows a prominent
orientation like edges or directional
@  patterns or texture




Image Interpolation

m “lrregular” are those that exhibit
structure without clear edge direction or
features that are too small to make up
an oriented area

m With this classification we control both
the interpolation of the extracted edges
and the original image, but use only the
pixels in the original image to find the
proper classification for each pixel and
Its neighborhood




Image Interpolation

m Classification Criteria

m A neighborhood is classified as
constant, if there are no sharp features

like edges or corners, L.e., It IS
I essentially a flat portion of the image

m Therefore, the local gray-level
difference must be below a certain
B  threshold




Image Interpolation

m Mathematically, the pixels in the region
satisfy the condition

Zmax _Zmin < Tl(gmax _gmin)

m In the above 7., and /., are the
local maximum and maximum, gmax
and g.... are the global extremes, and
1; 1s a threshold controlling the
classification with a value between 0
and 1
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Image Interpolation

m A reasonable value of 77 has been
found to be 0.1

m For the other two cases, we first
determine whether a certain orientation
IS dominant in the neighborhood or not

m We compute the gradient at all pixel
locations within a 4 x4 block by applying
Bl the Sobel operator resulting in 16

I gradients
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Image Interpolation

m Every gradient’s angle Is then quantized
to one of 12 possible directions as
shown below
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Image Interpolation

m The choice of 4x4 blocks yields a
directional resolution of about 15
degrees and has been found to be

sufficient
m If more than 50% of the 16 gradients
point in the same direction or in two
adjacent directions, we assume that this
g orientation is dominant and the
. neighborhood is classified as oriented




Image Interpolation

m The values of the missing samples are
then determined by interpolating along
the dominant direction Dominant

direction
m For example, p, Is
determined usinga 7
linear combination of
the adjacent known  ”
pixels shown by the
green arrows
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and dashed arrows

Dominant
direction

Image Interpolation
m Likewise, p; Is determined using a
Inear combination of the adjacent
Known pixels shown by the purple solid
]



A R D e

Image Interpolation

m Similarly, p, Is determined using a
linear combination of the adjacent
known pixels shown by the blue solid
and dashed arrows

Dominant
direction




Image Interpolation

he process Is equivalent to a low-pass
mterpolation with a kernel shown below

0O 0 0 0 06
0O 0 0 06 0
0 -01 0 06 O
0O —-0.1 11—0.1 0 Orli(ginolf
0 06 0 -01 0
0O 06 0 0 0
06 0 0 0 0



Image Interpolation

m For each of the 12 orientation cases, a
different kernel is used

m With this adaptation, interpolation Is
I carried out parallel to edges and not

across them

m This results in the desired smoothness
mm along the edge and sharpness across




Image Interpolation

m The neighborhood is classified as
irregular if no dominant orientation can
be found

m Here, the mean of the neighboring

I pixels Is used to estimate p, and p,

m For p,, however, a directional linear
T Interpolation is used as shown in the

I next slide




Image Interpolation

m In this case, the average of the
surrounding four shaded pixels Is used
with weighting factors determined by the
distance of these pixels from the arrow
through

Dominant

gzw direction

S o
P3




Image Interpolation

hinning of Zoomed Edges

m An edge In the original edge image Is
represented by a thin line

m In the zooming process, this line gets
thickened while remaining sharp

m In the output iImage, these thick lines
should be thinned so that they enhance
Bl the exact position of the edge when

. added back




Image Interpolation

m Thinning operation computes the
magnitude of the gradient at each pixel

m If the gradient magnitude Is above a
certain threshold, the gray level is

I divided by the square root of the

magnitude

m This reduces the amplitude only in the
steep areas and leaves flat areas
unchanged




Image Interpolation

m In experimental comparisons, the
adaptive interpolation method has been
found to compare favorably with
traditional zooming methods in terms of
the preservation of edges and overall
perceptual quality




Image Interpolation

m Figures below show images zoomed
using the bilinear interpolation method,
and the edge-enhanced zooming
method

o ) (SR e

{1

Bilinear method
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Image Halftoning

m General problem in printing of images:
Gray scale resolution must be adapted
to output device (often 1 bpp for gray
level images)

m Compensation possible by increasing
spatial resolution: HVS perceives local
averages (lowpass filter)

mm) Halftoned images can still
Invoke impression of gray levels
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dispersed)
m Error diffusion

Image Halftoning
Standard technique for b/w halftoning:
m Random dithering

I m Ordered dithering (clustered and

]
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Image Halftoning

Dithering

m Essentially thresholding operations with
either random or fixed thresholds

m Advantages — Computational simplicity

m Disadvantages - Detalls are lost,
Images are blurred




Image Halftoning

Error Diffusion
m Preferred choice for printing

m Advantages - Preserves details much
better and leads to higher quality prints

m Disadvantages - Blurring of details due
to the diffusion process

m Disadvantages — Higher complexity
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Image Halftoning

Standard Error Diffusion Method

m Basic idea: Use fixed quantizer and
spread quantization error out over local
neighborhood

m Enables neighboring pixels to
compensate each other partially




Image Halftoning

m Block diagram shown below

Input image - Output image

oS

m Input and output iImage size typically
O0<m<Mand 0<n<N

u[m, n]
[ X[m,n] —5¢——— quantizer é » y[m,n]
_|_
P




thresholc
m Multileve

Image Halftoning

m Quantizer is usually a single

INg operation
guantizer can be used for a
error diffusion

multileve
m Quantizer error e[m,n] Is filtered

through a lowpass filter G(z;,z,) and
mm then subtracted from the original input

I Image to yield u[m,n]




Image Halftoning

mlf e[m,n]>0,le., when the quantizer
output Is larger than its input, u[m,n] IS
smaller than the original pixel and
guantization of u[m,n] IS more likely to
yield zero

m ==) Some pixels are mapped to larger
values and some to smaller values, and
B they partially compensate each other’s

. guantization error




Image Halftoning

m The kernel of the lowpass filter used Is

given by
00 0 0 0
{100 0 00
glmn]=—10 0 0O 7 5
4813 5 7 5 3
1353 1

m Box indicates origin

A R b



Image Halftoning

m [0 preserve the local gray-value
Impression, the local averages of the
half-toned image and the original image
must be equal

m— 6(0)1’0)2)‘@1:@2:0 =2.2.9[m,n]=1
m n

m Above requirement can always be
B  implemented by using an appropriate

I scale factor
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Image Halftoning

m Pictorial way of looking at diffusion

Process.

Current pixel —%!

¥lv

Quantization error e(m,n)
distributed to its neighbors

v ¥

ii— Current pixel

Pixel x(m,n) is corrected
by a linear combination
of weighted quantization
Errors from neighbors



Image Halftoning

m Pixel Is corrected before quantization

m Error diffusion blurs fine detalls and
edges by spreading the error out over
neighborhood (e.g. 5 x5)

m Feedback loop and the subtraction of
the diffused error leads to a highpass
operation

m Process enhances the edges of the
Image

A R D e



Image Halftoning

m Even though individual pixels are
usually too small to be noticeable In
halftoned image, the overall contrast
and sharpness are reduced by this
effect and the overall halftoned image
guality suffers




Image Halftoning

m Improved error diffusion should only
diffuse error to pixels on the same side
of an edge

m A simple, yet effective, modification of
the standard error diffusion technique,
has improved significantly the quality
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Image Halftoning

m The modified method employs a 2-D
Teager filter to reduce the diffusion of
the error across edges and detalls

m Basic idea: Adapt diffusion filter G(zq, z,)

I to local image characteristics

m This has improved the separation of
mm  areas on both sides of an edge




Image Halftoning

m Figure below shows the block diagram
of the modified error diffusion method

ulm,n]
x[m,n] —e =@ * Quantizer ~y[m,n]
_|_
=+
[m. n] | e[m,n]

Nonlinear V[m’”L \_J | 1D[m,n]

" edge extraction

Strength
calculation
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adaptation of diffusion filter G(zy,z,)

m This Is achieved by passing vim,n]
through a block with an input-output
relation

\ if |p-v[m,n]|>1

1, otherwise

Vim,n]=

Image Halftoning
m Note vlm,n] can have both negative and
positive values
m Only the positive ones are employed for
]



Image Halftoning

m Values less than 1 will be lost, I1.e.
mapped to 1

m Does not lead to any actual loss of
Information as edges are typically
represented by values several orders of
magnitude larger

g = Avalue p =0.00025 yielded best results




Image Halftoning

m Diffusion filter adapted by dividing the
filter coefficients by the corresponding
value of v[m,n]:

gLk, /]
Vim—k,n—/]

elmn]l=>>em—-—k,n—/,]
k ¢




Image Halftoning

m Influence of error pixel e[m,n] on
Its adjacent pixels Is reduced whenever
It lles on or close to an edge

m Leads to an above-average number of
white pixels on the brighter side of the
edge, and an above-average black
pixels on the darker side

m Thus, the edge Is better defined and
S appears less fuzzy




Image Halftoning

m Figures below shows the halftoned
Image obtained using the original and
the modified approaches

I o

II\/Iooidif}‘éd methodl
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Image Halftoning

m It IS seen to be sharper with improved
contrast compared to that obtained
using the standard error diffusion
method




Concluding Remarks

m The 2-D Teager filter, a special type of
the quadratic Volterra filter, has a
number of interesting properties

m These properties have been exploited to
develop improved image processing
algorithms, such as contrast
enhancement, image zooming, impulse
noise removal, and image halftoning
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Concluding Remarks

m In these applications, the processed
Images appear perceptually much better
iIn overall quality than those obtained
using some well-known methods

m The operators are also computationally
quite attractive requiring very few
multiplications and additions
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