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IntroductionIntroduction
Linear image processing algorithms 
have received considerable attention 
during the last several decades
They are easy to implement and are 
computationally less intensive
The basic hypotheses for the 
development of linear models and linear 
signal processing algorithms are 
stationarity and Gaussianity



IntroductionIntroduction

To achieve improved performance, 
algorithms must take into account
– nonlinear effects in the human visual 

system
– nonlinear behavior of the image acquisition 

systems



IntroductionIntroduction
The hypotheses of stationarity and 
Gaussianity do not hold in the case of 
image signals
Linear filtering methods applied to an 
impulse-noise-corrupted image blur 
sharp edges and remove fine details 
Linear algorithms are not able to 
remove signal-dependent or 
multiplicative noise in images



IntroductionIntroduction
This has led to a growing interest in the 
development of nonlinear image 
processing methods in recent years
Due to rapidly decreasing cost of 
computing, image storage, image 
acquisition, and display, complex 
nonlinear image processing algorithms 
have also become more practical for 
implementation



IntroductionIntroduction
Types of Nonlinear Algorithms:
– Homomorphic filters
– Nonlinear mean filters
– Morphological filters
– Order statistic filters
– Polynomial filters
– Fuzzy filters
– Nonlinear partial differential equation 

based filters



DiscreteDiscrete--Time Time VolterraVolterra FiltersFilters

The Volterra filter is a special case of 
the polynomial filters
It is based upon an input-output relation 
expressed in the form of a truncated 
Volterra series
Simplest types are the quadratic filters 
corresponding to the first nonlinear term 
in the Volterra expansion



DiscreteDiscrete--Time Time VolterraVolterra FiltersFilters

Two attractive and important properties 
of the Volterra filters, and in particular, 
of the quadratic filters



DiscreteDiscrete--Time Time VolterraVolterra
OperatorsOperators
First Property

Output depends linearly on the 
coefficients of the filter itself
Is used to analyze the behavior of the 
filters, find new realizations, derive 
adaptive algorithms, etc.



DiscreteDiscrete--Time Time VolterraVolterra
OperatorsOperators
Second Property

Results from the representation of the 
nonlinearity by means of multi-
dimensional operators working on the 
products of input samples
Allows for the frequency domain 
description of the filters by means of 
multi-dimensional convolution



DiscreteDiscrete--Time Time VolterraVolterra
OperatorsOperators

The general form of the Volterra filter is 
described by the input-output relation:

y[n] and x[n] are, respectively, the 
output and input sequences, and
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DiscreteDiscrete--Time Time VolterraVolterra
OperatorsOperators

In the expression for             , the 
discrete variables            are usually 
defined on a causal support

is an offset term
is the impulse response of a 

linear FIR filter
can be considered as a 

generalized k-th order impulse response 
characterizing the nonlinear behavior
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11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

Infinite Memory Quadratic Filters
Input-output relation
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11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

Finite Memory Quadratic Filters
Input-output relation
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11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

Transform-Domain Representation
Convolution form of quadratic term

can be expressed as
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11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

For                                          

and         

so that
y[n] = w[n,n]
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11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

The two-dimensional (2-D) Fourier             
transform of                 given by

is defined as the frequency response
of the quadratic Volterra filter

h2[n1,n2]
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11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

The properties of the 2-D Fourier 
transform can be used to characterize 
the quadratic kernel
For example, the expression for y[n] can 
be derived using the inverse 2-D Fourier 
transform
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11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

where X(f) is the Fourier transform of
x[n]
Note: If the input to a quadratic filter is a 
sinusoid, i.e. if
then the output is

which is still a sinusoid but with a 
frequency 
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11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

If the input is a sum of two sinusoids 
with frequencies       and        , then the 
output contains three sinusoids of 
frequencies       ,        , and

af bf

af2 af2 ba ff +



11--D Quadratic D Quadratic VolterraVolterra FiltersFilters

As every kernel can be transformed into 
a symmetrical form, we restrict our 
attention here to Volterra filters with a 
symmetric impulse response, i.e.,

h2[n1,n2] h2[n2,n1]



Teager’sTeager’s 11--D OperatorD Operator

An example of the quadratic Volterra
filter is the Teager’s operator

Introduced by Kaiser to calculate the 
energy y[n] of a one-dimensional (1-D) 
signal x[n]
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Teager’sTeager’s 11--D OperatorD Operator

If the input is                                , then 
the Teager’s operator generates an 
output

for small values of
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Teager’sTeager’s 11--D OperatorD Operator

Thus, for sinusoidal inputs, the Teager
operator develops a constant output          
which is an estimate of the physical          
energy of a pendulum oscillating with a 
frequency      and an amplitude Aoω



Teager’sTeager’s 11--D OperatorD Operator

Under some mild conditions, the 1-D 
Teager operator can be approximately 
represented as

In the above

is the local mean
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Teager’sTeager’s 11--D OperatorD Operator

and the quantity

is the Laplacian operator which is an 
FIR highpass filter
Thus, the 1-D Teager operator behaves 
as a mean-weighted highpass filter
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Teager’sTeager’s 11--D OperatorD Operator

The 1-D Volterra filters that can be 
represented approximately as a local-
mean-weighted highpass filter satisfy 
the following three conditions:
(1)

(2)
and
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Teager’sTeager’s 11--D OperatorD Operator

(3)

A large class of such filters satisfies the 
above three conditions
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Teager’sTeager’s 11--D OperatorD Operator

The frequency-domain input-output 
relation of filters belonging to this class 
can be expressed as:

and            denote, respectively, 
the 1-D Fourier transforms of the output
y[n] and the input x[n]
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Teager’sTeager’s 11--D OperatorD Operator

If                     is a highpass filter, then 
the quadratic Volterra filter given by

satisfying the three conditions stated 
earlier can be approximated as a local-
mean-weighted highpass filter
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Teager’sTeager’s 11--D OperatorD Operator

The 1-D Teager operator

is an example of such a filter
It maps sinusoidal inputs to constant 
outputs
Every filter belonging to the class of 
local-mean-weighted highpass filters 
has the above property
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22--D D TeagerTeager OperatorOperator
A 2-D extension of the Teager operator 
is obtained by applying the filtering 
operation 

along both the vertical and horizontal 
directions:
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22--D D TeagerTeager OperatorOperator

Another 2-D extension is obtained by 
applying the 1-D operator along the two 
diagonal directions

]1,1[]1,1[],[2],[ 2 −++−−= nmxnmxnmxnmy
]1,1[]1,1[ ++−−− nmxnmx

m

n



22--D D TeagerTeager OperatorOperator
Both of the above two 2-D quadratic 
filters can be approximated as a local-
mean-weighted highpass 2-D filter
The general class of 2-D quadratic 
Volterra filters that can be 
approximately represented as a mean-
weighted highpass filter is characterized 
by three conditions similar to that 
satisfied by the 1-D Teager operator



22--D D TeagerTeager OperatorOperator

Based on this analysis, a number of 
other local-mean-weighted highpass
2-D filters have been developed
Another member of this class, for          
example, is the filter defined by
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Image Processing Image Processing 
ApplicationsApplications

The mean-weighted highpass filtering 
property of the 2-D Teager filters has 
been exploited in developing a number 
of image processing applications
We present next four specific 
applications



Contrast EnhancementContrast Enhancement
The conceptually simple unsharp
masking approach is a widely used 
image contrast enhancement method
Based on the addition of an amplitude-
scaled linear highpass filtered version of 
the image to the original image
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Contrast EnhancementContrast Enhancement

A commonly used linear highpass filter 
is the Laplacian operator:

Its main advantage is computational 
simplicity
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Contrast EnhancementContrast Enhancement
The highpass filter enhances those 
portions of the image that contains 
mostly high frequency information, such 
as edges and textured regions
Often yields visually pleasing results by 
utilizing an effect called simultaneous 
contrast
The perceptual impression is improved 
because the image appears sharper 
and better defined



Contrast EnhancementContrast Enhancement

Apparent problem of this technique is 
that it does not discriminate between 
actual image information and noise
Thus, noise is enhanced as well
Unfortunately, visible noise tends to be 
mostly in the medium to high frequency 
range



Contrast EnhancementContrast Enhancement

The contrast sensitivity function (CSF) 
of the human visual system (HVS) 
shows that the eye (and the higher level 
processing system in the visual cortex) 
is less sensitive to low frequencies
To eliminate the noise enhancement 
problem we need to make use of
Weber’s law



Contrast EnhancementContrast Enhancement

A visual phenomenon according to 
which the difference in the perceived
brightness of neighboring regions 
depends on the sharpness of the 
transition occurring at edges



Contrast EnhancementContrast Enhancement

We  modify the unsharp masking
method such that the image 
enhancement is dependent on the local 
average pixel intensity
In bright regions we can enhance the 
image more because noise and other 
gray level fluctuations are much less 
visible



Contrast Enhancement Contrast Enhancement 

On the other hand, in darker regions we 
want to suppress the enhancement 
process since it might deteriorate image 
quality
This simple idea indicates the need for 
a highpass filter that depends on local 
mean:
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Contrast EnhancementContrast Enhancement

Improvement in the visual quality of the 
image obtained using a nonlinear 
unsharp masking approach in which 
the linear highpass filter is replaced with 
a 2-D Teager operator
The filter output depends on the local 
background brightness, and as a result, 
it follows Weber's Law



Contrast EnhancementContrast Enhancement

Original image Enhanced image



Contrast EnhancementContrast Enhancement
Outputs of the Teager and the 
Laplacian filters are shown below

Teager filter output Laplacian filter output



Contrast EnhancementContrast Enhancement

Original Contrast Enhanced



Contrast EnhancementContrast Enhancement

Original Contrast Enhanced



Contrast EnhancementContrast Enhancement

The Laplcian filter output shows a 
uniform response to edges independent 
of background intensity
The Teager filter output is weaker in 
darker regions (e.g., the darker areas of 
the roof) and stronger in brighter areas 
(e.g., the bright wall)



Impulse Noise RemovalImpulse Noise Removal

Goal: To suppress the impulse noise 
while preserving the edges and the 
details
A number of nonlinear methods have 
been advanced for impulse noise 
removal
Among these, the most common is the 
median filtering



Impulse Noise RemovalImpulse Noise Removal
Median filtering is computationally 
efficient and does suppress impulse-
corrupted pixels effectively
In median filtering, whether a pixel is 
corrupted by impulse noise or not, it is 
replaced by its local median within a 
window
Thus, median filtering not only removes 
the impulse noise but also introduces 
distortion



Impulse Noise RemovalImpulse Noise Removal
A tradeoff needs to be made between 
the suppression of noise and the 
preservation of details and edges
For effective noise suppression in highly 
corrupted images, median filtering with 
a large window is required
Large window increases computational
complexity while introducing 
unacceptable visible degradation in the 
filtered image



Impulse Noise RemovalImpulse Noise Removal
A detection-estimation-based approach 
has been developed to remove impulse 
noise from highly corrupted image while 
preserving edges and fine details
First, a 2-D Teager operator is used to 
detect the locations of the impulse noise 
corrupted pixels
Then a selectively chosen local mean 
operator is used to estimate the original 
value of the corrupted pixel



Impulse Noise RemovalImpulse Noise Removal

Let x[m,n] denote the current pixel of an 
impulse-corrupted image with y[m,n]
denoting the output of the 2-D Teager
operator
If 

y[m,n] > T

where T is a suitably chosen threshold 
value, then x[m,n] is considered to be a 
pixel corrupted by a positive impulse



Impulse Noise RemovalImpulse Noise Removal
The corrupted is replaced by the 
average value of the uncorrupted pixels 
within the window (typically,       ), called 
the selective local mean
To detect pixels corrupted by a negative 
impulse, a complement of the input 
image is first generated according to

where B is the maximum gray value in 
the dynamic range

33×

],[],[' nmxBnmx −=



Impulse Noise RemovalImpulse Noise Removal
The Teager operator is next applied to    
detect the positive impulse corrupted in

The above method does work 
effectively in most cases
Figure on next slide shows an original 
uncorrupted image and the noisy 
image corrupted with 20% positive 
impulse noise

],[' nmx



Impulse Noise RemovalImpulse Noise Removal

Original Noise corrupted



Impulse Noise RemovalImpulse Noise Removal
Figures below shows the images 
obtained using median filters with a   

window and  a        window33× 55×

filterMedian33 × filterMedian55 ×



Impulse Noise RemovalImpulse Noise Removal
Figures below show the images 
obtained applying the Teager filter 
based methods

Two-pass Teager filterTeager filter



Impulse Noise RemovalImpulse Noise Removal
There are two cases, where the 2-D 
Teager operator fails to detect the noisy 
pixels
Case 1: When there is a group of 
impulse corrupted pixels matching the 
structure of the 2-D nonlinear operator, 
i.e., a crossing of the horizontal and 
vertical directions



Impulse Noise RemovalImpulse Noise Removal

Case 2: When the positive noisy pixels 
are located in the white areas, or 
negative noisy pixels are located in the 
dark areas
To solve the problem with the first case, 
a joint-structure 2-D nonlinear operator 
has been employed



Impulse Noise RemovalImpulse Noise Removal

Here, to detect a positive impulse noise,    
the following nonlinear operator is used:

In the above,            , i = 1, 2, 3, 4, are 
the outputs of four different 2-D 
quadratic operators defined by

=],[ nmy
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Impulse Noise RemovalImpulse Noise Removal
],1[],1[],[2],[ 2

1 nmxnmxnmxnmy +⋅−−=
]1,[]1,[ +⋅−− nmxnmx

]1,1[]1,1[],[2],[ 2
2 ++⋅−−−= nmxnmxnmxnmy

]1,1[]1,1[ +−⋅−+− nmxnmx
],2[],2[],[2],[ 2

3 nmxnmxnmxnmy +⋅−−=
]2,[]2,[ +⋅−− nmxnmx

],[2],[ 2
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Impulse Noise RemovalImpulse Noise Removal

To solve the problem in the second 
case, the following nonlinear operator is 
used:

where     is the normalized local mean 
defined within a        window and

=],[ nmy
]},[],,[],,[],,[max{ 4321 nmynmynmynmy

],[)(],[ 2 nmycbanmy xxm ⋅+µ+µ=

xµ
33×



Impulse Noise RemovalImpulse Noise Removal

Noisy pixel corrupted by a positive 
impulse is detected by comparing the 
value of               with respect to a given 
threshold
The modified operator can also be used 
to detect noisy pixels corrupted by a 
negative impulse by applying them to 
the complementary image

],[ nmym
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Impulse Noise RemovalImpulse Noise Removal

Application of this modified approach 
has been found to provide improved 
performance in comparison to traditional 
median filtering-based methods
Figure on next slide shows the image  
obtained using the improved detection-
estimation method



Impulse Noise RemovalImpulse Noise Removal

Improved Teager filter



Image InterpolationImage Interpolation
Image zooming is usually implemented 
in two steps
First the image is up-sampled by an 
integer factor M, in both the horizontal 
and the vertical directions
Up-sampling inserts (M–1) zero-valued 
pixels among each consecutive pairs of 
pixels



Image InterpolationImage Interpolation

More appropriate values of these new 
pixels are obtained using some type of 
interpolation method in the second step
Commonly used interpolation methods 
are the bilinear transformation or splines
which tend to introduce artifacts in the 
zoomed version that degrade the visual 
quality of the image



Image InterpolationImage Interpolation

A more effective approach, based on 
the use of the 2-D Teager operators, 
adapts to local characteristics of the 
image while enhancing the quality
The adaptive technique can better 
incorporate properties of human visual
system (HVS) and yields more pleasing 
results



Image InterpolationImage Interpolation

Figure below shows the block diagram 
of the edge-enhanced zooming method



Image InterpolationImage Interpolation

In the top branch, the input image is 
first up-sampled by a factor of 2 in both 
horizontal and vertical directions
Then, the missing samples are found 
using an adaptive interpolation
Bottom branch extracts perceptually 
important edge and texture information 
using the quadratic Volterra filter



Image InterpolationImage Interpolation

The quadratic Voletrra filter used is

As mentioned earlier, this filter extracts 
and enhances fewer edges in the darker 
portion of the image

]1,1[]1,1[],[3],[
2
12 −−++−= nmxnmxnmxnmy

]1,1[]1,1[
2
1 +−−+− nmxnmx

]1,[]1,[],1[],1[ −+−−+− nmxnmxnmxnmx



Image InterpolationImage Interpolation

Also, noise is amplified to a lesser 
degree in these darker areas
An important issue, because due to 
Weber’s law, noise is more visible in the 
darker areas than in the bright portions
As a result, edges in the zoomed image 
are enhanced without generating 
perceptually significant noise



Image InterpolationImage Interpolation

Note that the overall structure follows 
the simple idea of unsharp masking
It yields a sharper output image, 
because the high-frequency 
components are emphasized by adding 
a fraction of the lower branch output 
back to the zoomed image



Image InterpolationImage Interpolation

The proposed method adapts to local 
edge and texture orientation and uses 
several interpolation filters instead of 
only one
We consider zooming by factors of 2 in 
each direction
Method can be extended to other 
factors



Image InterpolationImage Interpolation
Consider the figure below where the 
filled circles represent original pixels 
and the empty circles represent the 
zero-valued pixels obtained after up-
sampling

0p
1p

3p2p



Image InterpolationImage Interpolation

Objective of interpolation is to replace 
these zero-valued samples with 
appropriate values
For example, we must estimate the 
values of pixels    ,    , and     from the 
information given in the local 
neighborhood

1p 2p 3p



Image InterpolationImage Interpolation

The local neighborhood of      is 
classified into one of 3 categories:
constant, oriented or irregular
“Constant” means without clear features
“Oriented” block shows a prominent 
orientation like edges or directional 
patterns or texture

0p



Image InterpolationImage Interpolation
“Irregular” are those that exhibit 
structure without clear edge direction or 
features that are too small to make up 
an oriented area
With this classification we control both 
the interpolation of the extracted edges 
and the original image, but use only the 
pixels in the original image to find the 
proper classification for each pixel and 
its neighborhood



Image InterpolationImage Interpolation
Classification Criteria
A neighborhood is classified as 
constant, if there are no sharp features 
like edges or corners, i.e., it is 
essentially a flat portion of the image
Therefore, the local gray-level 
difference must be below a certain 
threshold



Image InterpolationImage Interpolation

Mathematically, the pixels in the region 
satisfy the condition

In the above         and          are the 
local maximum and maximum,          
and         are the global extremes, and       

is a threshold controlling the 
classification with a value between 0
and 1

)( minmax1minmax ggT −<− ll

maxl minl

maxg

maxg
1T



Image InterpolationImage Interpolation

A reasonable value of       has been 
found to be 0.1
For the other two cases, we first 
determine whether a certain orientation 
is dominant in the neighborhood or not
We compute the gradient at all pixel 
locations within a         block by applying 
the Sobel operator resulting in 16
gradients

44×

1T



Image InterpolationImage Interpolation

Every gradient’s angle is then quantized 
to one of 12 possible directions as 
shown below

0 1 2 3

4

5
6

7
8
9

1011



Image InterpolationImage Interpolation

The choice of         blocks yields a 
directional resolution of about 15
degrees and has been found to be 
sufficient
If more than 50% of the 16 gradients 
point in the same direction or in two 
adjacent directions, we assume that this 
orientation is dominant and the 
neighborhood is classified as oriented

44×



Image InterpolationImage Interpolation
The values of the missing samples are 
then determined by interpolating along 
the dominant direction
For example,        is                  
determined using a                                     
linear combination of                               
the adjacent known                             
pixels shown by the                        
green arrows

0p

2p

1p

3p

Dominant
direction

2p



Image InterpolationImage Interpolation

Likewise,      is determined using a 
linear combination of the adjacent 
known pixels shown by the purple solid
and dashed arrows

0p

2p

1p

3p

Dominant
direction

1p



Image InterpolationImage Interpolation

Similarly, is determined using a 
linear combination of the adjacent 
known pixels shown by the blue solid
and dashed arrows

3p

0p

2p

1p

3p

Dominant
direction



Image InterpolationImage Interpolation

The process is equivalent to a low-pass 
interpolation with a kernel shown below

00006.0
0006.00
01.006.00
01.01.00
06.001.00
06.0000
6.00000

−
−−

−
1 Origin of

kernel



Image InterpolationImage Interpolation

For each of the 12 orientation cases, a 
different kernel is used
With this adaptation, interpolation is 
carried out parallel to edges and not 
across them
This results in the desired smoothness 
along the edge and sharpness across



Image InterpolationImage Interpolation

The neighborhood is classified as 
irregular if no dominant orientation can 
be found
Here, the mean of the neighboring 
pixels is used to estimate      and
For      , however, a directional linear 
interpolation is used as shown in the 
next slide

3p
1p 2p



Image InterpolationImage Interpolation

In this case, the average of the 
surrounding four shaded pixels is used 
with weighting factors determined by the 
distance of these pixels from the arrow 
through

0p

2p

1p

3p

Dominant
direction



Image InterpolationImage Interpolation
Thinning of Zoomed Edges

An edge in the original edge image is 
represented by a thin line
In the zooming process, this line gets 
thickened while remaining sharp
In the output image, these thick lines 
should be thinned so that they enhance 
the exact position of the edge when 
added back



Image InterpolationImage Interpolation
Thinning operation computes the 
magnitude of the gradient at each pixel
If the gradient magnitude is above a 
certain threshold, the gray level is 
divided by the square root of the 
magnitude
This reduces the amplitude only in the 
steep areas and leaves flat areas 
unchanged



Image InterpolationImage Interpolation

In experimental comparisons, the 
adaptive interpolation method has been 
found to compare favorably with 
traditional zooming methods in terms of 
the preservation of edges and overall 
perceptual quality



Image InterpolationImage Interpolation
Figures below show images zoomed 
using the bilinear interpolation method,  
and the edge-enhanced zooming 
method

Edge-enhanced methodBilinear method



Image Image HalftoningHalftoning
General problem in printing of images: 
Gray scale resolution must be adapted 
to output device (often 1 bpp for gray 
level images)
Compensation possible by increasing 
spatial resolution: HVS perceives local 
averages (lowpass filter)

Halftoned images can still 
invoke impression of gray levels



Image Image HalftoningHalftoning

Standard technique for b/w halftoning:
Random dithering
Ordered dithering (clustered and 
dispersed)
Error diffusion



Image Image HalftoningHalftoning

Dithering
Essentially thresholding operations with 
either random or fixed thresholds
Advantages – Computational simplicity
Disadvantages - Details are lost, 
images are blurred



Image Image HalftoningHalftoning

Error Diffusion
Preferred choice for printing
Advantages - Preserves details much 
better and leads to higher quality prints
Disadvantages - Blurring of details due 
to the diffusion process
Disadvantages – Higher complexity



Image Image HalftoningHalftoning

Standard Error Diffusion Method
Basic idea: Use fixed quantizer and 
spread quantization error out over local 
neighborhood
Enables neighboring pixels to 
compensate each other partially



Image Image HalftoningHalftoning

Block diagram shown below

Input and output image size typically    
and

],[ nmx + quantizer• •

),( 21 zzG

_

_
+

+

+

],[ nmu
],[ nmy

],[ nme

Input image Output image

Mm ≤≤0 Nn ≤≤0



Image Image HalftoningHalftoning

Quantizer is usually a single 
thresholding operation
Multilevel quantizer can be used for a 
multilevel error diffusion
Quantizer error is filtered 
through a lowpass filter and 
then subtracted from the original input 
image to yield

],[ nme

],[ nmu

),( 21 zzG



Image Image HalftoningHalftoning

If                 , i.e., when the quantizer
output is larger than its input,             is 
smaller than the original pixel and 
quantization of             is more likely to 
yield zero

Some pixels are mapped to larger 
values and some to smaller values, and 
they partially compensate each other’s 
quantization error

0],[ >nme
],[ nmu

],[ nmu



Image Image HalftoningHalftoning

The kernel of the lowpass filter used is 
given by

Box indicates origin
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Image Image HalftoningHalftoning

To preserve the local gray-value 
impression, the local averages of the 
half-toned image and the original image 
must be equal

Above requirement can always be 
implemented by using an appropriate 
scale factor

∑∑ ==ωω =ω=ω
m n

nmgG 1],[),( 021 21



Image Image HalftoningHalftoning

Pictorial way of looking at diffusion 
process:

Current pixel Current pixel

Quantization error e(m,n)
distributed to its neighbors

Pixel x(m,n) is corrected 
by a linear combination
of weighted quantization
Errors from neighbors



Image Image HalftoningHalftoning
Pixel is corrected before quantization
Error diffusion blurs fine details and 
edges by spreading the error out over 
neighborhood (e.g. 5   5)
Feedback loop and the subtraction of 
the diffused error leads to a highpass
operation
Process enhances the edges of the 
image

×



Image Image HalftoningHalftoning

Even though individual pixels are 
usually too small to be noticeable in 
halftoned image, the overall contrast 
and sharpness are reduced by this 
effect and the overall halftoned image 
quality suffers



Image Image HalftoningHalftoning
Improved error diffusion should only 
diffuse error to pixels on the same side 
of an edge
A simple, yet effective, modification of 
the standard error diffusion technique, 
has improved significantly the quality



Image Image HalftoningHalftoning

The modified method employs a 2-D
Teager filter to reduce the diffusion of 
the error across edges and details
Basic idea: Adapt diffusion filter             
to local image characteristics
This has improved the separation of 
areas on both sides of an edge

),( 21 zzG



Image Image HalftoningHalftoning

Figure below shows the block diagram 
of the modified error diffusion method

Quantizer+

+
+−

x[m,n] y[m,n]

Strength
calculation

Nonlinear
edge extraction

],[ nmu
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Image Image HalftoningHalftoning

Note            can have both negative and 
positive values
Only the positive ones are employed for 
adaptation of diffusion filter
This is achieved by passing           
through a block with an input-output 
relation

),( 21 zzG

],[ nmv

],[ nmv

⎨⎩
⎧ >⋅ρ⋅ρ= 1

otherwise,1
|],[|if|,],[|],[~ nmvnmvnmv



Image Image HalftoningHalftoning

Values less than 1 will be lost, i.e. 
mapped to 1
Does not lead to any actual loss of 
information as edges are typically 
represented by values several orders of 
magnitude larger
A value ρ = 0.00025 yielded best results



Image Image HalftoningHalftoning

Diffusion filter adapted by dividing the 
filter coefficients by the corresponding 
value of            :],[~ nmv
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Image Image HalftoningHalftoning
Influence of error pixel e[m,n] on 

its adjacent pixels is reduced whenever 
it lies on or close to an edge
Leads to an above-average number of 
white pixels on the brighter side of the 
edge, and an above-average black
pixels on the darker side
Thus, the edge is better defined and 
appears less fuzzy



Image Image HalftoningHalftoning
Figures below shows the halftoned
image obtained using the original and 
the modified approaches

Original method Modified method



Image Image HalftoningHalftoning

It is seen to be sharper with improved 
contrast compared to that obtained 
using the standard error diffusion 
method



Concluding RemarksConcluding Remarks

The 2-D Teager filter, a special type of 
the quadratic Volterra filter, has a 
number of interesting properties
These properties have been exploited to 
develop improved image processing 
algorithms, such as contrast 
enhancement, image zooming, impulse
noise removal, and image halftoning



Concluding RemarksConcluding Remarks

In these applications, the processed 
images appear perceptually much better 
in overall quality than those obtained 
using some well-known methods
The operators are also computationally 
quite attractive requiring very few 
multiplications and additions



The EndThe End
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