Printed Air-fed Array Antennas

Professor Wen-Xun ZHANG

State Key Lab. of Millimeter Waves Southeast University Nanjing, Jiangsu, 210096 CHINA

- ♦ Introduction -3
- ♦ Reflectarray -25
- ♦ Transmitarray -2
- ♦ Fabry-Perot Resonator -7
- Compound Air-fed Array -14
- Conclusion -1

INTRODUCTION - 2

HIGH-GAIN

INTRODUCTION - 3

FAMILY

Printed Reflectarray

Principle

 $k\Delta r_n$

н

 $\phi_{R,n}$

Advantages

- **★** Design Flexibility
- **★** Diversified Types
- **★** Conformable Structure
- **★** Deployable and Foldable
- **★** Simply Air-fed

Disadvantages

★ Narrower Bandwidth **★** Lower Efficiency *Need to be improved !*

Feed

Band-broadening Schemes 2 --- Broadband TSA as feed

<u>Merits</u>

- Broadband traveling wave radiation
- ♦ Almost equal beamwidth as $\Theta_{-10dB}^{E} \approx \Theta_{-10dB}^{H} \approx 74^{\circ}$
- Thin sheet with small physical cross-section
- Potential for beam-shaping or polar-transform

Band-broadening Schemes 3 --- Optimizing array architecture

Prototype

Simulated: 8.9-11.2 GHz (22.8%) VSWR<1.6 Measured: 9.0-10.8GHz (18.2%) VSWR<1.4

2-D Shaping Principle

A pair of 1-D plates crossed with 36° angle

Saddle-beam in H-plane needs to be narrowed by using bended CTSA pair

Almost keep the pattern in E-plane as 1-D plate

x.

Double -Layer

Triple -Layer

f = 10 GHz

45° polar-twist

 $t_1 = t_2 = t_3 = 0.5 \text{ mm}, \ \varepsilon_{r1} = \varepsilon_{r2} = \varepsilon_{r3} = 2.2$ $h_1 = 3 \text{ mm}, \ h_2 = h_3 = 2 \text{ mm}, \ A_x = A_y = 17 \text{ mm},$ $S_1 = c_x / a_x = c_y / a_y = 0.7,$ $S_2 = b_x / a_x = b_y / a_y = 0.9, \text{ at } a_x = 12 \text{ mm}$

Defined

Similarity ratio $S_1 = c_x/a_x = c_y/a_y$ $S_2 = b_x/a_x = b_y/a_y$ Aspect ratio $\tau = a_y/a_x = b_y/b_x = c_y/c_x$ Patch side $a_x \sim$ lower patch, in x- side

Adjusted

 $S_1 = 0.7, S_2 = 0.9$ within (0.6~0.9) τ for transform polarization a_x for phase compensation

Array Architecture

<u>37-element array</u>

8 kinds of element

Kind of	1st	2nd	3rd	4th	5th	6th	7th	8th
Numbers	1	4	4	4	8	4	4	8

↑ y Line1 Line2 Line3 9 Line4 Line5 8 8 8 8 Line6 Line7 7 Line8 6 б 6 6 В Line9 5 5 5 5 Line10 line11 4 4 4 4 4 4 4 Line12 X 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 ¥ **1** 4 **4** -1/-¥ -<u>1</u>4| **-1**/+ →X

No.									
Line	1	2	3	4	5	6	7	8	9
Line 1	(16,	(15.7,	(15.08,	(14.34,	(13.2,	(11.25,	(8.55,	(13.44,	(10.5,
	0.828)	0.835)	0.827)	0.78)	0.715)	0.51)	1.46)	0.725)	1.33)
Line 2	(15.84,	(15.36,	(14.7,	(13.85,	(12.18,	(9.92,	(14.34,	(11.95,	(8.55,
	0.83)	0.832)	0.81)	0.745)	0.672)	1.37)	0.78)	0.66)	1.46)
Line 3	(15.46,	(14.92,	(14.2,	(13,	(11.02,	(8.35,	(13.3,	(10.26,	
	0.835)	0.82)	0.77)	0.705)	1.29)	1.47)	0.715)	1.345)	
Line 4	(15.03,	(14.45,	(13.5,	(11.75,	(9.5,	(14.12,	(11.6,	(8.05,	
	0.825)	0.785)	0.725)	0.635)	1.395)	0.76)	0.615)	1.5)	
Line 5	(14.52,	(13.78,	(12.32,	(10.3,	(7.25,	(12.72,	(9.62,		
	0.795)	0.742)	0.676)	1.347)	1.61)	0.695)	1.385)		
Line 6	(13.9,	(12.72,	(10.95,	(8.53,	(13.55,	(10.83,			
	0.75)	0.695)	1.3)	1.46)	0.728)	1.305)			
Line 7	(12.88,	(11.35,	(9.22,	(14.06,	(11.7,	(8.53,			
	0.7)	0.545)	1.415)	0.76)	0.62)	1.46)			
Line 8	(11.45,	(9.62,	(14.41,	(12.5,	(9.62,				
	0.575)	1.385)	0.785)	0.68)	1.385)				
Line 9	(9.76,	(7,	(13,	(10.35,					
	1.38)	1.655)	0.705)	1.34)					
Line 10	(7.36,	(13.36,	(10.95,	(7.6,					
	1.592)	0.72)	1.3)	1.56)					
Line 11	(13.44,	(11.35,	(8.45,						
	0.725)	0.545)	1.465)						
Line 12	(11.45,	(8.9,							
	0.575)	1.435)							
Line 13	(9.1,								
	1.422)								

焦距 F=310 mm 口径 D = 450 mm

72 种单元

Line13

 ϕ max = 793°

阵列单元口径面分布(1/4阵面)

Prototypes

37-element 2-/3-Layer Sample

489-element 2-Layer Sample

37-element LP \rightarrow X-LP reflectarray

37-element LP \rightarrow **X-LP reflectarray**

Directivity & Polarity *vs. Frequency*

37-element LP \rightarrow **X-LP reflectarray**

Pattern vs. frequency

37-element LP \rightarrow **X-LP reflectarray**

Pattern & Polarization

37-element LP \rightarrow **X-LP reflectarray**

Pattern & Polarization

Directivity~17.1 dB HPBW ~ 14° SLL ~ -13 dB X-Polar ~ -19.3 dB

using CST Microwave Studio 5.0

Summary on Reflectarray

• The Combined Techniques of sized, stacked, rectangular patch used as Elements of Reflectarray are available to improve its Bandwidth & Efficiency.

• The reflectarray with orthogonally polarization transform can reduce feed blockage and exhibit more stable frequency response due to polarized isolation between the feed and reflected wave.

• *Three-layer* reflectarray of microstrip patches exhibits wider bandwidth than two-layer reflectarray, but less aperture efficiency.

• The **Polarization Transform** in **Reflectarray** is a novel branch with respect to potential wider Applications.

• The reflectarray with *improved & optimized* performances needs to be *further studied* ;

• The mechanism analysis of non-periodic & non-axial-symmetric array is a serious challenge.

Printed Transmitarray

TRANSMITARRAY - 1

Comparison

Contrast to the shortcoming of a **Reflectarray** with Forward-towering as a **Reflector** Ant.,

The shortcoming of a **Transmitarray** are **backward-towering** as a **Lens** Ant.,

Both occupy a volume with larger thickness !

Transmitarray based on **multilayer interference** with but { lower efficiency due to incompletely canceling & impossible to steer the beam orientation.

Transmitarray based on receiving-transmitting with delay-line connection as a Repeater,

but complicated transmission structure results in trouble for

∫ design & \ fabrication.

Select R-T type for improving performances !

TRANSMITARRAY - 2

Prototype

37-element TA with Directly corner-fed stacked square-patch

F/D=0.5 TSA-feed

Main perf	<u>ormances</u>	FID-0.5 ISA-jeeu			
Data	Freq. range	BW _{AG-3dB}	G _{max} (dB)	XPL(dB)	
Simulated	(8.2~10.2)GHz	21.6 %	16.3	-12.5	
Measured	(8.6~11.0)GHz	24.3 %	15.4	-10.9	

Printed Fabry-Perot Resonator

FABRY-PEROT RESONATOR - 1

Review on Microstrip Patch Antenna with Cover

FABRY-PEROT RESONATOR - 2

Review on Planar Fabry-Perot Resonator

Microwave Fabry-Perot Resonator (1966)

Components

A Feed with broad impedance-bandwidth is Embedded into a parallel-plates resonator;
A Base with ground-plate provides full reflection of incidence for avoid Backward radiation;
A Cover with high reflectivity & little transparency for Forward radiation;
A proper Spacing between base & cover to meet the Resonance condition.

Performances $G \approx (1+r)/(1-r)$ High Gain ~~~ {As high as required in Principle by increasing Reflectivity I & Spacing;
Is restricted in Practice by Conductivity & Leaking due to finite plate-size.Narrow BW ~~~ {Narrow band for Gain-drop due to the Resonance;
Narrow band for Feed-matching when employing Simple-feed (patch/dipole).}
A common bandwidth must be specified ! Usually, they does Not Coincide !Poor Efficiency ~~~ {Poor uniformity of aperture-field distribution for enlarging the plate size;
Serious leakage of lateral-wave for enlarging the spacing.Thin Structure ~~~ Comparing to the RA & TA with towering feed.

Schemes for Improvement

- **1. Improved Cover ~~~** Broadband single- / double-layer FSS of printed patches;
- 2. Improved Feed ~~~ Broadband Wide-slotted plate (MS-fed) or U-slotted patch (Coaxial fed);
- 3. Improved base ~~~ PEC or broadband AMC (artificial magnetic conductor) as Grounded FSS.

Radiator structures

FABRY-PEROT RESONATOR - 4

Base structures

(*R* ~ reflection coefficient)

AMC

FABRY-PEROT RESONATOR - 5

Hc

G (dBi)

Cover Structures

Fields distribution

Design Samples

Optimized sizes for different combination of Cover-Radiator-Base ----- Pay more attention to Coincide VSWR & Directivity bands with together

 $f_r = 14 \text{ GHz}, \quad \lambda_r = 21.43 \text{ mm}$

F-P Resonator Structure [<i>Aperture area</i> =(62 mm) ²]	D (dBi)	η _Α (%)	Height (mm / λ)	Beamwidth (<i>E-/H-plane</i>)	<i>SLL</i> (dB) (<i>E-/H-plane</i>)	F/B (dB)	BW (%) Common
FSS//U-slotted patch//PEC	18.96	64.2	13.90/0.65	17.1°/16.1°	-17.0/-16.3	25.52	<u>7.90</u>
FSS//U-slotted patch//AMC	18.42	58.3	<u>11.70/0.55</u>	18.3°/18.9°	-18.0/-17.3	23.85	5.49
FSS//Wide-slot//PEC	<u>19.60</u>	<u>87.0</u>	20.04 0.94	15.5°/17.2°	-16.1/-18.3	21.20	3.75
EBG/Slab//U-slotted patch//PEC	17.83	57.7	20.24 / 0.94	18.1° / 18.6°	–15.1 / –16.1	23.14	7.69
EBG/Slab//U-slotted patch//AMC	17.75	56.6	18.24 / 0.85	18.8° / 19.6°	–15.5 / –17.3	23.50	5.64
Slab/EBG// Wide-slot//PEC	18.55	68.0	28.31 / 1.32	15.5° / 16.3°	–13.0 / –16.6	22.79	5.91
EBG/Slab// Wide-slot//PEC	18.50	68.0	27.01 / 1.26	15.4° / 17.0°	–12.8 / –16.7	26.69	6.84

Using <u>FSS-cover</u> always: *thinning structure, higher Gain, & broader common BW*; Using <u>AMC-base</u> always: *thinnest structure, lower Gain, & narrower common BW*; Comparing <u>Wide-slot feed</u> to U-slotted patch: *higher Gain & narrower common BW*.

Broadening common bandwidth of F-P R Ant is a major & essential challenge.

FABRY-PEROT RESONATOR - 7

Prototypes

1-layer FSS Cover U-slotted patch Feed AMC-Base 11.7 mm (0.55 λ) Height 2-layer-slab EBG Cover U-slotted patch Feed PEC-Base 20.2 mm (0.94 λ) Height

Gain >

Printed Compound Air-fed Array

Improved Printed F-P Resonator Antenna

Understanding Compound Air-fed Array Antennas

A modified reflectarray with a backfire feed ---- Near-field illumination and short focal length

Repeatedly utilizing the feed-blockage of RA

A modified transmitarray with an array feed ---- Near-field illumination and short focal length

Forming co-phase wave illuminating the TA

A modified Fabry-Perot array with an patch feed ---- Quasi-period of tapered eleme for bandwidth extending Correcting phase for individual ray in F-P R

Phase Compensation in Frequency Band

Let

Mis-resonant phase in Frequency Band

Definition on gain-drop bandwidth

Validation of resonant condition

1. The differences among calculated, simulated and measured f_0 are within $\frac{4\%}{2}$. The difference between simulated and measured G_{max} is less than $\frac{2 \text{ dB}}{2}$

Design Flow-chart

- **1. Choose a broadband feed in isolated case**
- 2. Set the Spacing as about $\lambda_0/4$
- 3. Illuminated phase-difference at aperture
- 4. Phase-compensation for cover elements
- 5. Phase-compensation for base elements [Iteration I]
- 6. Modify broadband feed under the effects of cover/base
- (7. For changed radiator [Iteration II])

Full-structure Simulation ----- by using CST Microwave Studio 5.0

Practical condition

and Ground plate with finite-size Thin substrates with lower permittivity and loss Equal square period with centered square patch-elements A feed of array occupies centered two-period

Design objective

Maximizing the peak of Gain/Directivity Maximizing the common Bandwidth for both VSWR & Gain-drop Compromising the Gain/Directivity and Bandwidth Minimizing the profile for acceptable Gain/Directivity & Bandwidth

Simulated Performances

----- For different criteria

<u>at 14.0 GHz</u>

Structure fed by U-slotted Patch	Square -period	Tapered FSS/AMC	Tapered FSS only	Uniform FSS/AMC
Performances	Unit	for G _{max}	for $(BW_G)_{max}$	for h _{min}
Gain G	dBi	19.53	18.44	18.61
Aperture Efficiency η_{aper}	%	74.36	61.5	60.2
Common Bandwidth $\Delta f/f_0$	%	7.99	11.93	5.53
Profile Height h	mm	13.0	14.2	11.5
E-/H- plane Side-lobe SLL	-dB	17.3/18.7	18.0/19.2	19.5/16.9
Front-to-Back Ratio F/B	dB	36.36	25.05	31.54
E-/H-plane Beamwidth <i>HPBW</i>	0	18.2/17.8	18.7/18.9	20.0/18.6

Example of D_{max}

at 14.0 GHz

Performance comparison

with Folded Reflectarray

W. Menzel, *et al*, (2002) *Proc. 32nd EuMC*, 1–4

Southeast University	Proposer	University of Ulm	
Tapered FSS Inversely tapered AMC	Cover Base	Grid / Filter Tapered RA	
70×63×13 (mm)	Profile Sizes	150×150×25 (mm)	
Simulated data	Performance	Measured results	
$f_0 = 14.0 \text{ GHz}$	Frequency	f ₀ = 27.6 GHz	
D _{max} = 19.53 dBi G _{max} = 19.41 dBi	Directivity Gain	<i>G</i> _{max} = 30.8 dBi ∕ 29.5 dBi	
η _{aper} = 74.36 % η _{Ant} = 72.33 %	Aperture Efficiency Antenna Efficiency	η _{Ant} = 50.24 % / 37.24 %	
SLL ≤ –17.3 dB	Side-Lobe Level	SLL ≤ –20 dB / –21 dB	
BW _G = 9.66 % BW _{com.} = 7.99 %	Gain BW for ⊿G _{–3dB} Common BW	BW _G = 9.32 % / 2.90 %	

Structure Photos

Further approaches

There are three aims $\left\{ \begin{array}{c} \end{array} \right.$	Enhancing Gain under defined Bandwidth Extending Bandwidth with enough Gain Thinning the profile with acceptable Gain
There are three scheme	Increasing both Spacing & aperture size Employing hexagon array & sub-array technique Utilizing sub-wavelength resonance mechanism
There are three potenti	als { For Sub-array elements of Phased Array For Base-station of Wireless Communications For Mobile Receiver of Satellite broadcasting

The Research & Development are going on, it could not be concluded now !

Retrospect

Printed Air-fed Array Antennas have constituted a flourishing family, almost every kinds had been concerned in SEU;

The Compound Air-fed Array is a new member with good Performances, it is attractive in various Application aspects;

The contradiction of Gain with Bandwidth in impedance-matching has been extended to Bandwidth in Gain-drop for high-gain antennas;

An Gain limitation of compound Air-fed Array with thin structure is to balance aperture size & efficiency, the solution is used as Sub-array.

