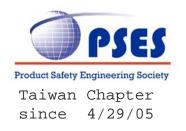
Radiation Hazards in the Great Technology War

Present by: C. H. Chiang

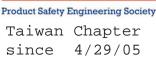
- FOREWORD
- MICRODISPLAY PROJECTION **TECHNOLOGIES**
- ADVANCES IN LIGHT SOURCE
- THE NATURE OF ULTRAVIOLET RADIATION
- KNOWN BIOLOGICAL EFFECTS

since 4/29/05


Outline

- GUIDELINES FOR EXPOSURE LIMITS
- ESTIMATION OF UVR IRRADIANCE
- NEW UPDATE FROM TC108 MT2
- BEFITTING ASSESSMENT GUIDELINES
- SUMMARY

FOREWORD



- 58% of women opt a HDTV (highdefinition television) set over a 1carat diamond ring
 - It's convincing just now though this study had released by Consumer Electronics Association (CEA) in the end of 2002

- Umbrella term for TV signals transmitted in digital – e.g. the adoption of setup boxes
- HDTV
 - Currently the most robust and detailed TV image
 - Lifelike picture and sound that surpasses DVD
 - Original impetus for HDTV came from wide-screen movies – increases the sense of "being there"

Fever of HDTV

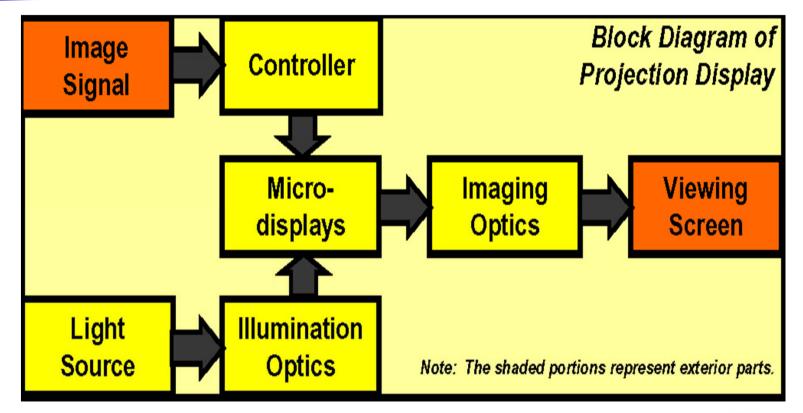
- Conventional CRT-based rear projection televisions (RPTVs)
- Modern microdisplay-based RPTVs
 - Swiftly gaining the market share due to...
 - Ever topnotch picture quality
 - Lager field of vision
 - Smaller form factor
 - More affordable price points

Product Safety Engineering Society Taiwan Chapter since 4/29/05

Simultaneously, people who embracing the stunning viewing screens may have good chance of exposing themselves to radiation hazards without perception.

Root cause - the light source

MICRODISPLAY PROJECTION TECHNOLOGIES



Great Technology War

- Categorized by tiny panels whether block or transmit light
 - Transmissive
 - Amorphous LCD (AM-LCD) Clarity
 - Polysilicon LCD (HTPS-LCD) -Sony
 - Reflective
 - Digital light processing (DLPTM) TI
 - Liquid crystal on silicon (Lcos) projects JVC

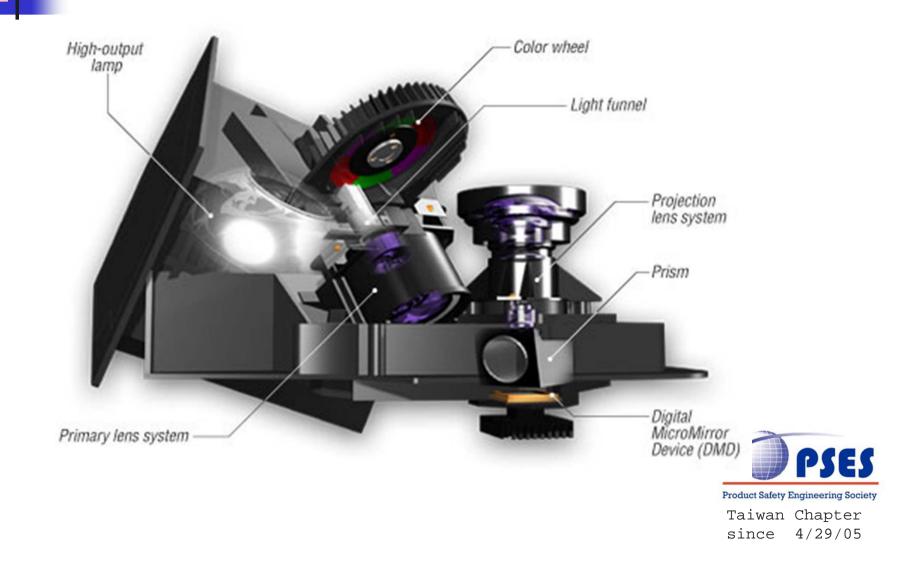
Taiwan Chapter since 4/29/05

Formation of Projected Image

Form Factor (Fat or Flat???)

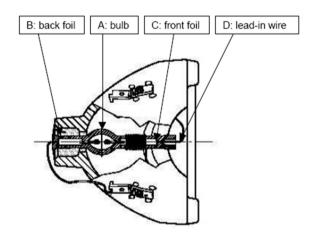
- CRT-based
 - Fairly Bulky
- Microdisplaybased
 - Mitsubishi's Mini
 DLP
 PocketProjector™
 - Seems to realized the dream of projection anywhere

Mitsubishi Launches Mini LED DLP PocketProjector[™] on Feb. 8th, 2005


Digital Light Processing (DLP™)

- Invented in 1987 by Dr. Hornbeck of Texas Instruments Inc.
- Digital Micromirror Devices or DMDs
 - Grayscale (1,024 shades)
- Color Wheel
 - "Field sequential" color (1/30 second)
 - 16.7 million colors for single-chip system
 - 35 trillion colors for 3-chips system

Product Safety Engineering Society Taiwan Chapter since 4/29/05


Digital Light Processing (DLP[™])

Application of Safeguard

Light (Luminance) output

- Designer and safety engineer is aligned
- Back Reflector
 - Divergent
 - Thermal burden
 - Light leaks (may incorporated with invisible UVR)

ADVANCES IN LIGHT SOURCE

Light Source in Microdisplay Projection

- Metal Halide Lamp in early ages
 - High efficiency and quality but...
 - Long start-up and restarting time (improvable by pulse-start technique)
 - Short lifespan due to deposition (e.g. W)
- High-pressure Mercury lamp
 - Major innovation UHP by Philips
 - 100 W UHP lamp surpasses about 250 W metal halide lamp

Special Cares for Such Amazing Artifact

- Annoying high-levels of UVR
 - Sensitive fabrics, papers, artifacts and even mankind
- Ozone may be generate by the photolysis of oxygen
 - Proper ventilation
 - Excessive inhalation may cause

headaches, nausea or dizziness

Taiwan Chapter since 4/29/05

Special Cares for Such Amazing Artifact


- Lamp shatter (e.g. splash or collision)
 - Limit the accessibility
- Hazardous waste (e.g. Hg)
 - Cannot be thrown in the trash
 - Disposal of spent lamp must be according to applicable federal, state and local regulations

since

THE NATURE OF ULTRAVIOLET RADIATION

Electromagnetic Radiation

- Ionizing Radiation
 - Sufficient energy to knock out the electron from the orbit
 - Ionize atomic oxygen and hydrogen
- Non-ionizing Radiation Frequency less than 2.42e+15 Hz
 - Relatively low energy
 - Atomic Excitation only

The Nature of the UVR

Unperceivable to human eyes

- Inconspicuous hazard in HBSE
 - Generic public could not consciously recognize the danger by the sense of sight
- Low penetrability
 - Biological effects were limited to skin & eyes, tissues at depth are unlikely to be at risk

Taiwan Chapter since 4/29/05

Upon phenomenological basis

TABLE 1 – Ultraviolet Radiation Wavelength Regions

Region	CIE Divisions (nm)	ICNIRP/IEC/ACGIH Divisions (nm)
Ultraviolet C (UVC)	<u> 100 – 280</u>	180 – 280
Ultraviolet B (UVB)	280 – 315	280 – 315
Ultraviolet A (UVA)	315 – 400	315 – 400
Differences were print	PSE	

Product Safety Engineering Society Taiwan Chapter since 4/29/05

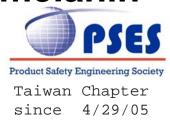
Sources of UVR

- Sunlight
 - All UVC and approximately 90% UVB will be absorbed by ozone (O3), water vapor (H2O), oxygen (O) and carbon dioxide (CO2);
 - UVA is less affected by the atmosphere.
- Man-made may squeeze the limits
 - Incandescent lamps
 - Gas discharges
 - Electric discharges
 - Fluorescent lamps

KNOWN BIOLOGICAL EFFECTS

Wavelength Dependent

- Vacuum or extreme UV (10-180 nm)
 - We do not live under such condition
- UVC (180-280 nm)
 - Easily absorbed by stratosphere Ozone
 - Artificial germicidal UVC lamps bacteria
 - server sunburn to the face or inflammation of the cornea (photo keratitis) and conjunctiva (photo conjunctivitis)



Product Safety Engineering Society Taiwan Chapter 4/29/05 since

Wavelength Dependent

UVB (280-315 nm)

- Typically the most destructive
- Erythema (sunburn) and cataracts
- Break bonds in the DNA Skin cancer (y)
- **UVA (315-400 nm)**
 - Cause fluorescent materials to emit visible light - black light
 - Pigment-darkening phenomenon melanin
 - Vitamin D3 synthesis

THRESHOLD LIMITS

Builders of Criteria

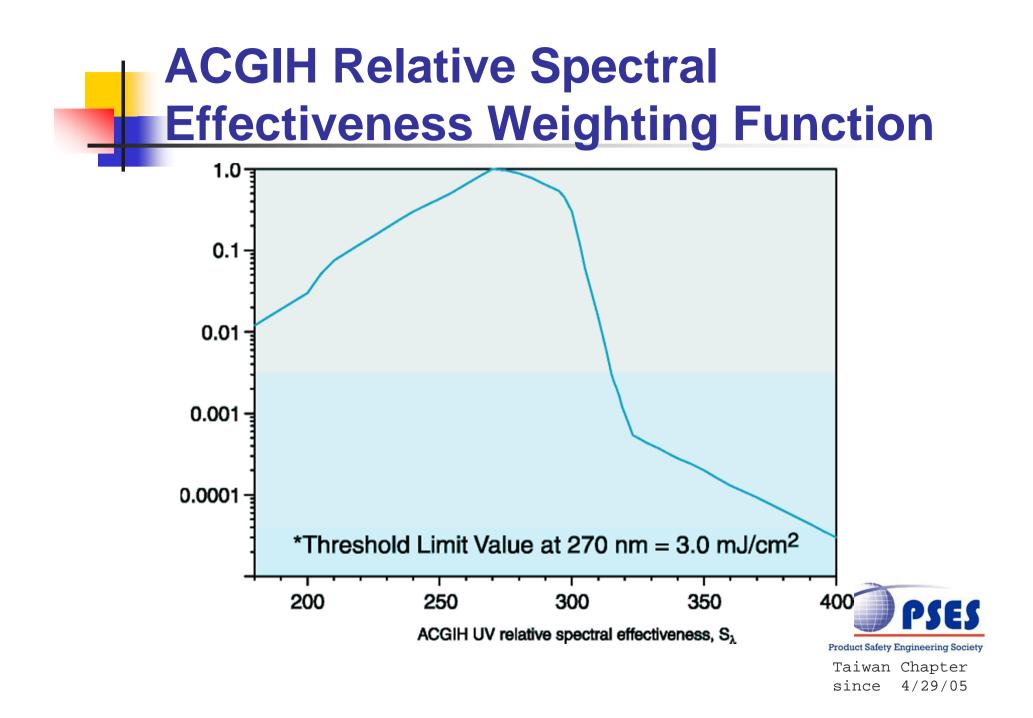
- American Conference of Governmental Industrial Hygienists (ACGIH)
 - Threshold Limit Values (TLVs)
- The International Commission on Nonlonizing Radiation Protection (ICNIRP)

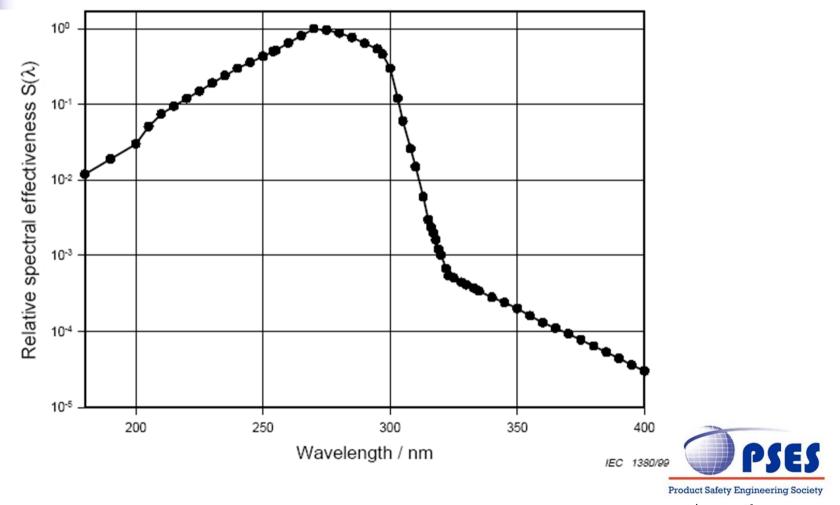
Exposure limits (ELs)

- IEC TR 60825-9, First Edition, 1999-10
 - Maximum Permissible Exposures (MPEs)

ACGIH & ICNIRP

2001 ACGIH TLVs			
Wavelength (nm)	TLV	Protection	
180 – 400 (UVR)	30 J m-2 eff (8 h)	Skin (and eye below 315 nm)	
315 – 400 (UVA)	104 J m-2 <i>(t < 1000 s)</i>	Eye	
315 – 400 (UVA)	10 W m-2 (t ≥ 1000 s)	Eye	
Current ICNIRP ELs			
Wavelength (nm)	EL	Protection	
180 – 400 (UVR)	30 J m-2 eff (8 h)	Skin (and eye below 315 nm)	
315 – 400 (UVA)	104 J m-2 (8 h)	Eye	
<i>300</i> – 700	106 J m-2 sr-1 eff (t ≤ 104s)	Blue-light (retina)	
<i>300</i> – 700	100 W m-2 sr-1 eff (t >104s)	Blue-light (retina)	
<i>300</i> – 700	100 J m-2 eff (t ≤ 104 s)	Blue-light (angular subtense α < 11 mrad)	
<i>300</i> – 700	10-2 W m-2 eff (t > 104 s)	Blue-light (angular subtense $\alpha < 11 \text{ mrad}$	
<i>380</i> – 1400	50000/αt1/4 W m-2 sr-1 eff	Retinal burn (visual stimulus & t < 10s)	


since 4/29/05

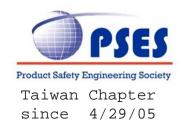

IEC TR 60825-9, First Edition, 1999-10			
Wavelength (nm)	MPE	Protection	
180 – 400 (UVR)	30 J m-2 eff (8 h)	Skin (and eye below 315 nm)	
315 – 400 (UVA)	104 J m-2 (8 h)	Eye	
<i>300</i> – 700	106 J m-2 sr-1 eff (t ≤ 104s)	Blue-light (retina)	
<i>300</i> – 700	100 W m-2 sr-1 eff (t >104s)	Blue-light (retina)	
<i>300</i> – 700	100 J m-2 eff (t ≤ 104 s)	Blue-light (angular subtense α < 11 mrad)	
<i>300</i> – 700	10-2 W m-2 eff (t > 104 s)	Blue-light (angular subtense α < 11 mrad)	
<i>380</i> – 1400	50000/at1/4 W m-2 sr-1 eff	Retinal burn (visual stimulus & t < 10s)	
380 – 1400	28000/at1/4 W m-2 sr-1 eff	Retinal burn (visual stimulus & t > 10s)	
Differences were printed	l in italics	Product Safety Engineering Soci	

Taiwan Chapter

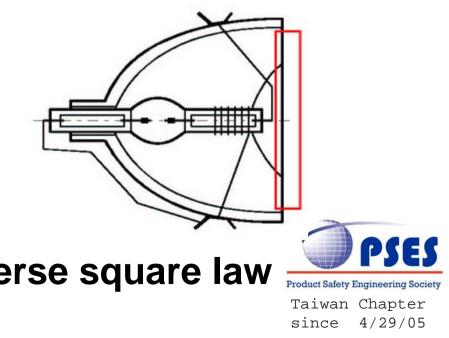
since 4/29/05

IEC TR 60825-9 Relative Spectral Effectiveness

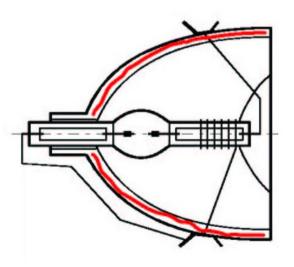
Taiwan Chapter since 4/29/05


Safety Standards

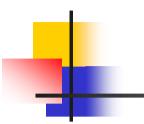
- IEC 60950-1:2001 "Information Technology Equipment – Safety – Part
 - 1: General Requirements"
 - Clauses 4.3.13 and 4.3.14
 - IEC 60825-9 for an 8 h exposure
- IEC 60065-1:2001 "Audio, Video and Similar Electronic Apparatus – Safety Requirements"
 - Not found



ESTIMATION OF UVR IRRADIANCE

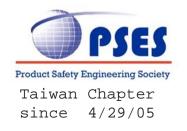

Throughput of Projection Display

- The function of transmission of the optical components
- Typical optical components:
 - UV-IR filter
 - Color wheel
 - Imaging engine
 - Turning mirror
 - Projection screen
 - Distance (air) inverse square law



Rear Lamp Reflector

- Varied with specific construction
 - Reflector coating
 - Distance (air)
 - Safeguard if any (e.g. lamp housing)



MODULE#8

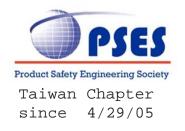
NEW UPDATE FROM TC108 MT2

Interpretation of IEC TC 108

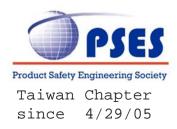
- IEC TC 108 MT2 Interpretation Panel issued the interpretation toward IEC60950-1, Ed. 1, 4.3.13 and 4.3.14 (question 49) on April 29, 2005
- The opinion
 - only applicable to a device which has predominate radiation emission in UV region (180-400 nm)

Interpretation of IEC TC 108

With the issuance of this interpretation, projection displays will no longer require to measure UV as it did not emit UV radiation "significantly" or "predominantly" in wavelengths between 180-400 nm.



Adobe Acrobat Document


MODULE#9

BEFITTING SAFETY ASSESSMENT

EN 14255-1:2005

- Measurement and assessment of personal exposures to incoherent optical radiation – Part 1: Ultraviolet radiation emitted by artificial sources in the workplace
 - Not apply to which in leisure time
 - Not specify the limit values
 - National regulations or
 - International recommendations
 - Not apply to radiation emission products
 - IEC/EN 60335-2-27 → Sunbeds
 - IEC/EN 60335-2-59 → Insect killers

Adobe Acrobat Document

Flowchart of Procedure

a) Preliminary Review – Paper exercise

- Clear statement can be made
 - Steps b) through e) need not to be applied
- Provision of protective measures if hazardous
- b) Work Task Analysis
- c) Measurement of UV-exposure

Product Safety Engineering Society Taiwan Chapter since 4/29/05

Flowchart of Procedure

Adobe Acrobat Document

- d) Assessment of UV-exposure
- e) Decision about Protective Measures
 - Provision of protective measures if hazardous
- f) Decision about Repetition
- g) Preparation of Report \rightarrow End up

The Difficulties

- To carry out a full set of radiometric hazard assessment would:
 - Never be inexpensive
 - Considerable equipment,
 - Expertise and
 - Time
- If adequate and precise UVR emission data are available, it may be waived or limited as minimum

Matters Needing Attention

- Free of stray light and reflections
- Maximum operating condition
- Hot spot on the accessible surface
- Proviso of inverse square law
 - At least 10 times the largest dimension of the source - Error can be exactly 1%
- Safety interlock system shall evaluate to IEC 60950-1, 2.8 (e.g. inadvertent re-activation, durability) pses

Product Safety Engineering Society Taiwan Chapter since 4/29/05

Important Notions

- Flowchart of procedure
- If the insignificance can be clearly determined, no further action is required
- Bring the uncertainty in
 - 30% in accordance with ENV 13005

Important Notions

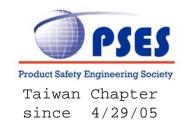
- Comparison among methods, e.g.
 - Broad-band radiometer + Detector which simulates the weighting function
 - Quick, inexpensive and flexible but uncertainty may be large
 - Spectroradiometer in the wavelengthrange between 180-400 nm
 - Relatively accurate but increased cost

Taiwan Chapter since 4/29/05

SUMMARY

Summary

- Why almost exposure are for workers?
 - Employees will still have UVR exposure regardless whether they want to make use of UVR sources or not
 - Inescapable
 - Users are considered unlikely to give rise to exposure in excess of the limits if they can recognize the danger
 - Very helpful in hazard assessment


Product Safety Engineering Society Taiwan Chapter since 4/29/05

Summary

- Why the limits adopt 8 hours exposure for users using information technology equipment? (I don't know)
 - American adults spent 4 hours watching TV without enforcement
 - Behavioral safeguard, personal avoidance?
- Role-playing of the lamp supplier
 - Slim the assessment to paper exercise
 - Manufacturer's spectroradiometric classification data may greatly simplify at Chapter since 4/29/05

Thanks for your attendance!

