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Distributed Estimation/Detection in Smart Grid

Estimation: Large-scale power system state
Detection: Attack or anomaly in the system
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Distributed Estimation over Linear Dynamical Systems

Dynamical field Sensor Network

Field/Signal Process: {xk} ∈ RM

x(k+1)∆ = Fxk∆ +wk

Local observation at sensor n: {yn

k∆
} ∈ Rm �

y
n

k∆ = Cnxk∆ + v
n

k

• Applications: Smart Grid, Social Network, etc...
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Assumptions on the Signal Model

We impose the following global assumptions on the signal/observation
model:

• Stabilizability-Assumption (S.1): The pair (F ,Q1/2) is stabilizable.
The non-degeneracy (positive definiteness) of Q ensures this.

• Global Detectability-Assumption (D.1): The pair (C,F) is detectable,
where C = [CT

1 · · · CT
N ]T .

Remark 1. We do not assume local detectability at each agent. These
assumptions are required even by the centralized estimator to achieve a
stable estimation error. We later show that under rather weak conditions
on the inter-sensor communication, the global detectability assumption is
also sufficient for our distributed scheme to achieve stable estimation errors
at each sensor.
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Distributed Filtering Architecture

• The agents (sensors) need to collaborate for successful estimation of
{xk}.

• Basic Sensing and Communication Architecture:

– Inter-agent communication rate is measured as the link activation rate

– Inter-agent communication is assumed perfect

• Communication is constrained by the network topology; and only γ >
0 rounds of inter-agent message passing may be allowed per epoch
(k∆, (k + 1)∆] on an average.
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M-GIKF Scheme
The overall communication rate γ is split over two phases:

Slotted Time

Comm

Sample

k k+1

Estimate swap + Observation Agg

• Estimate Swapping:

– Agents perform pairwise swapping of previous epoch’s estimates (if
the corresponding link is active)

– Estimate Swapping guarantees asymptotic stability of local estimation
errors under weak global detectability assumptions

• Observation Aggregation:

– Agents use the remaining communication to disseminate their
instantaneous observations to the neighbors

– Observation Aggregation improves estimation performance
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Communication Rate Constraint

Define:

• Me(k): Number of sensor communications at the k-th epoch for estimate
swapping

• Mo(k): Number of sensor communications at the k-th epoch for
observation aggregation

Communication Constraint: Since γ > 0 is given, we require:

lim sup
k→∞

1

k

k−1∑

j=0

(Me(k) +Mo(k)) ≤ γ a.s.
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GS Protocol: Estimate Swapping

Connectivity - Assumption (C.1): The maximal graph (V, E) is connected,
where V denotes the set of N agents and E the set of allowable links.

Proposition 1. Under (C.1) we have the following:

• The sequence {Ae(k)} of estimate swapping adjacency matrices is
independent and identically drawn from a special distribution D

• The mean adjacency matrix A
e
is irreducible and aperiodic

• The average number of inter-sensor communications due to estimate
swapping satisfies almost surely (a.s.)

M
e
= lim

k→∞
(1/k)

k−1∑

i=0

Me(k) < γ/2
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GS Protocol: Observation Aggregation

Adjacency matrix sequence drawn following a Poisson process of rate γ/2

Proposition 2. Under (C.1) we have the following:

• The average number of inter-agent communications due to observation
aggregation per epoch is γ/2.

• The sequence {In
k } denotes the set of observations (w.r.t. node indices)

available at sensor n at the end of the epochs; then for every epoch k
and every sensor n,

P(In
k = [1, · · · , N ]) > 0
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Reasonable Communication Scheme

Definition 1. A communication scheme (for estimate swapping and
observation aggregation) is said to be reasonable if

(E.1) The estimate swapping adjacency matrices {Ae(k)} are i.i.d. The mean
matrix A is doubly stochastic, irreducible, and aperiodic.

(E.2) The sequences {In
k } are i.i.d. for each n, independent of the estimate

swapping and satisfy P(In
k = [1, · · · , N ]) > 0.

(E.3) The average number of inter-sensor communications (including both the
estimate swapping and observation aggregation steps) per epoch is less
than or equal to γ, where γ > 0 is a predefined upper bound on the
communication rate.

Remark 2. The previous GS protocol is a reasonable scheme under (C.1).
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M-GIKF: Estimate Update

Define:
• (x̂n

k|k−1, P̂
n
k ): Estimate (state) at sensor n of xk based on information

till time k − 1
• n→

k : Neighbor of sensor n at time k w.r.t. Ae(k).

With estimate swapping : swap
(
x̂n
k|k−1, P̂

n
k

)
and

(
x̂
n→
k

k|k−1, P̂
n→
k

k

)
;

With observation aggregation: sensor n collects: y
Ik
n

k

Update Rule:

x̂n
k+1|k = E

[
xk+1

∣∣∣∣ x̂
n→
k

k|k−1, P̂
n→
k

k ,y
Ik
n

k

]

P̂n
k+1 = E

[(
xk+1 − x̂n

k+1|k

)(
xk+1 − x̂n

k+1|k

)T
∣∣∣∣ x̂

n→
k

k|k−1, P̂
n→
k

k ,y
Ik
n

k

]
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M-GIKF: Estimate Update (Contd.)

• The filtering steps can be implemented through time-varying Kalman
filter recursions

• The sequence {P̂n
k } of conditional predicted error covariance matrices at

sensor n satisfies the random Riccati recursion:

P̂n
k+1 = F P̂

n→
k

k FT +Q−F P̂
n→
k

k CT
n

(
CnP̂

n→
k

k CT
n +Rn

)−1

CnP̂
n→
k

k FT

• The sequence {P̂n
k } is random due to the random neighborhood selection

functions n→
k and Ik

n

• The goal is to study asymptotic properties of {P̂n
k } at every sensor n

– In what sense {P̂n
k } is stable

– In what sense they reach agreement
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Switched Riccati Iterates

Let P denote a generic subset of [1, · · · , N ].
Define:

• CP: The stack of Cj’s for all j ∈ P

• fP(·): The Riccati operator given by

fP(X) = FXFT +Q−FXCT
P

(
CPXCT

P +Rn

)−1
CPXFT

The conditional prediction error covariances are then updated as:

P̂n(k + 1) = fIn
k

(
P̂n→

k
(k)

)
, ∀n

Remark 3. The sequence {P̂n(k)} evolves as a random Riccati iterate
with non-stationary switching.
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M-GIKF: Main Results on Convergence

Theorem 1. Consider the M-GIKF under assumptions (S.1), (D.1), (C.1),
and (E.1)-(E.3). Then,

(1) Let q be a uniformly distributed random variable on [1, · · · , N ]
independent of the sequences {Ae(k)} and {Ik

n}. Then, the sequence{
P̂q(k)

}
converges weakly to an invariant distribution µγ on S

N
+ , i.e.,

P̂q(k) =⇒ µγ.

(2) The performance approaches the centralized one exponentially over γ̄.

(3) For each n, the sequence of conditional error covariances
{
P̂n(k)

}
is

stochastically bounded,

lim
J→∞

sup
k∈T+

P(‖P̂n(k)‖ ≥ J) = 0.

14



ECE, Texas A&M University Shuguang (Robert) Cui

Proof Methodology

• An appropriate stationary modification of the switched Riccati iterate
governing the covariance evolution leads to a hypothetical Random
Dynamical System (RDS) in the sense of Arnold.

• The RDS thus constructed is shown to be order preserving and strongly
sublinear.

• Together with the global detectability and network connectivity
assumptions, the weak convergence of the stationary hypothetic RDS is
established.

• The ergodicity of the actual covariance sequence {P̂n(k)} is then applied
to obtain the same convergence results for the original non-stationary
system.
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Summary of Estimation Results

• Stability of distributed Kalman filtering errors is established under
assumptions of network connectivity and global detectability.

• The analysis requires a new approach to the random Riccati equation
(with non-stationary switching).

• Distributional convergence of the random Riccati equation is established;

• Approaching centralized performance exponentially fast over the inter-
sensor communication rate.
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Distributed Detection

• N sensors decide between two hypotheses: H0 vs. H1.

• Sensor n observes Yn(k) at time k; observation vector: Y(k) =
[Y1(k), . . . , YN(k)] ∈ R

N

• Conditional PDFs f0 and f1:

Under Hl : fl(Y(k))dν, l = 0, 1.

• Global Kullback-Lieber (KL) divergence D(P0||P1) vs. D(P1||P0) :

D(P0||P1) = E0

[
ln

(
f0(Y(k))

f1(Y(k))

)]
=

∫

RN
ln

(
f0(Y)

f1(Y)

)
f0(Y)dν(Y).
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Mixed Time Scale Distributed Detection: Algorithm MD

• Each sensor maintains a local decision variable: Xn(k).

• Connected sensor pair (i, j) communicates as Ui,j(k) = Xi(k)+Wi,j(k).

• Local decision: H1 if Xn(k) > 0; otherwise H0.

• Type-I error:

P
1
e(n, k) = P0(Xn(k) > 0),

and the Type-II error:

P
2
e(n, k) = P1(Xn(k) ≤ 0).
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Local Decision Variable Xn(k)

• At time k, local observation generates local intelligence (LLR):

Sn(k) = log
(
f1(Yn(k))
f0(Yn(k))

)
.

• At time k + 1, local decision variable is updated (mixed time scale) as

Xn(k + 1) = Xn(k) − β(k)
∑

j∈Ωn

[

Xn(k) − Un,j(k)
]

+ α(k)
[

Sn(k) − Xn(k)
]

= Xn(k) − β(k)
∑

j∈Ωn

[Xn(k) − Xj(k) − Wn,j(k)]

+α(k)
[

Sn(k) − Xn(k)
]

=
[

1 − β(k)
∑

j∈Ωn

1 − α(k)
]

Xn(k) + β(k)
∑

j∈Ωn

Xj(k)

+β(k)
∑

j∈Ωn

Wn,j(k) + α(k)Sn(k).
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Key Assumptions

• (E.1): The sensor observations are conditionally independent, i.e.,

Under Hl : fl(Y(k))dν =
N∏

n=1

fn,l(Yn(k))dν, l = 0, 1,

• (E.2): We assume global detectability, i.e., D(P0||P1) > 0 (and
D(P1||P0) > 0).

• (E.3): The inter-sensor communication network is connected.

• (E.4): The time varying weight sequences {β(k)}∞k=0 and {α(k)}∞k=0

associated with the update process satisfy

β(k) =
b0

(k + 1)τ
,

1

2
< τ < 1, and α(k) =

a

(k + 1)
.

(limk→∞ β(k)/α(k) = ∞: Consensus potential vs. Innovation potential.)
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Main Theorem and Summary

Theorem 2. Let assumptions (E.1)-(E.4) hold. Then,

lim
k→∞

P
1
e(n, k) = 0 and lim

k→∞
P
2
e(n, k) = 0, n = 1, . . . , N.

• When local observations are i.i.d., a single time scale distributed algorithm
is achievable;

• With Gaussian noise assumptions, error decay exponent is obtainable.
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