High Performance Digital Fractional-N Frequency Synthesizers

IEEE Distinguished Lecture Lehigh Valley SSCS Chapter

Michael H. Perrott October 2013

Copyright © 2013 by Michael H. Perrott All rights reserved.

Why Are Digital Phase-Locked Loops Interesting?

- PLLs are needed for a wide range of applications
 - Communication systems, digital processors, ...
- Performance is important
 - Phase noise/jitter is often a limiting factor
- Standard analog PLL implementations present issues
 - Analog blocks pose design and verification challenges
 - The cost of implementation is becoming too high ...

Can digital phase-locked loops offer excellent performance with a lower cost of implementation? Just Enough PLL Background ...

What is a Phase-Locked Loop (PLL)?

- Voltage Controlled Oscillator (VCO) efficiently provides oscillating waveform with variable frequency
- PLL synchronizes VCO frequency to input reference frequency through feedback
 - Key block is phase detector
 - Realized as *digital gates* that create pulsed signals

Integer-N Frequency Synthesizers

Use digital counter structure to divide VCO frequency

Constraint: must divide by integer values

Use PLL to synchronize reference and divider output

Output frequency is digitally controlled

Fractional-N Frequency Synthesizers

Dither divide value to achieve fractional divide values
PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved

The Issue of Quantization Noise

Striving for a Better PLL Implementation

Analog Phase Detection

- Pulse width is formed according to phase difference between two signals
- Average of pulsed waveform is applied to VCO input

Tradeoffs of Analog Approach

- Benefit: average of pulsed output is a continuous, linear function of phase error
- Issue: analog loop filter implementation is undesirable

Issues with Analog Loop Filter

- Charge pump: output resistance, mismatch
- Filter caps: leakage current, large area

Going Digital ...

- Digital loop filter: compact area, insensitive to leakage
- Challenges:
 - Time-to-Digital Converter (TDC)
 - Digitally-Controlled Oscillator (DCO)

Outline of Talk

- Basics
 - Time-to-Digital Converters (TDCs)
 - Digitally-Controlled Oscillators (DCOs)
- Modeling
 - Transfer function modeling
 - Noise analysis
- Improving the TDC
 - Background
 - Gated-Ring Oscillator (GRO) structure
- A high performance digital PLL example
 - GRO TDC for low noise
 - Quantization noise cancellation
 - Low jitter divider design

Classical Time-to-Digital Converter

- Resolution set by a "Single Delay Chain" structure
 - Phase error is measured with delays and registers
- Corresponds to a flash architecture

Modeling of TDC

- Phase error converted to time error by scale factor: $T/2\pi$
- TDC introduces quantization error: t_q[k]
- **TDC** gain set by average delay per step: Δt_{del}

Impact of Limited Resolution and Delay Mismatch

- Limit cycles due to limited resolution (unless high ref noise)
- Fractional-N PLL
 - Fractional spurs due to non-linearity from delay mismatch

A Straightforward Approach for Achieving a DCO

- Use a DAC to control a conventional LC oscillator
 - Allows the use of an existing VCO within a digital PLL
 - Can be applied across a broad range of IC processes

A Much More Digital Implementation

- Adjust frequency in an LC oscillator by switching in a variable number of small capacitors
 - Most effective for CMOS processes of 0.13u and below

Leveraging Segmentation in Switched Capacitor DCO

- Similar tradeoffs as segmented capacitor DAC structures
 - Binary array: efficient control, but may lack monotonicity
 - Unit element array: monotonic, but complex control
- Coarse and fine control segmentation of DCO
 - Coarse control: active only during initial frequency tuning
 - Binary array provides efficient control implementation
 - Fine control: controlled by PLL feedback
 - Unit element array minimizes dynamic charge transfer

Leveraging Dithering for Fine Control of DCO

- Increase resolution by $\Sigma \Delta$ dithering of fine cap array
- Reduce noise from dithering by
 - Using small unit caps in the fine cap array
 - Increasing the dithering frequency (defined as $1/T_c$)
 - Assume $1/T_c = M/T$ (i.e. M times reference frequency)

Noise Spectrum of a Switched Cap DCO

Modeling

Overall Digital PLL Model

- TDC and DCO-referred noise influence overall phase noise according to associated transfer functions to output
- Calculations involve both discrete and continuous time

Key Transfer Functions

TDC-referred noise

$$\frac{\Phi_{out}}{t_q} = \frac{(1/\Delta t_{del})H(e^{j2\pi fT})T2\pi K_v/(2\pi jf)}{1+(1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$

DCO-referred noise

$$\frac{\Phi_{out}}{\Phi_n} = \frac{1}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$

Utilize G(f) as a Parameterizing Function

Define open loop transfer function A(f) as:

$$A(f) = (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)$$

Define closed loop parameterizing function G(f) as:

$$G(f) = \frac{A(f)}{1 + A(f)}$$

Note: G(f) is a lowpass filter with DC gain = 1

Transfer Function Parameterization Calculations

TDC-referred noise

$$\frac{\Phi_{out}}{t_q} = \frac{(1/\Delta t_{del})H(e^{j2\pi fT})T2\pi K_v/(2\pi jf)}{1+(1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$
$$= \frac{2\pi NA(f)}{1+A(f)} = 2\pi NG(f)$$

DCO-referred noise

$$\frac{\Phi_{out}}{\Phi_n} = \frac{1}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$
$$= \frac{1}{1 + A(f)} = \frac{1 + A(f) - A(f)}{1 + A(f)} = \frac{1 - G(f)}{1 - G(f)}$$

Key Observations

TDC-referred noise

$$\frac{\Phi_{out}}{t_q} = 2\pi NG(f)$$

Lowpass with a DC gain of $2\pi N$

DCO-referred noise

$$\frac{\Phi_{out}}{\Phi_n} = 1 - G(f)$$

Highpass with a high frequency gain of 1

How do we calculate the output phase noise?

Phase Noise Calculation

A Closer Look at the Influence of TDC Noise

How Do We Improve TDC Performance?

Two Key Issues:

- TDC resolution
- Mismatch

Improve Resolution with Vernier Delay Technique

Issues with Vernier Approach

- Mismatch issues are more severe than the single delay chain TDC
 - Reduced delay is formed as *difference* of two delays
- Large measurement range requires large area
 - Initial PLL frequency acquisition may require a large range

Two-Step TDC Architecture Allows Area Reduction

Two-Step TDC Using Time Amplification

Leveraging Metastability to Create a Time Amplifier

Simplified view of: Abas, et al., Electronic Letters, Nov 2002 (note that actual implementation uses SR latch)

- Metastability leads to progressively slower output transitions as setup time on latch is encroached upon
 - Time difference at input is amplified at output

Interpolating time-to-digital converter

- Interpolate between edges to achieve fine resolution
- Cyclic approach can also be used for large range
An Oscillator-Based TDC

- Output e[k] corresponds to the number of oscillator edges that occur during the measurement time window
- Advantages
 - Extremely large range can be achieved with compact area
 - Quantization noise is scrambled across measurements

A Closer Look at Quantization Noise Scrambling

- Quantization error occurs at beginning and end of each measurement interval
- As a rough approximation, assume error is uncorrelated between measurements
 - Averaging of measurements improves effective resolution

Deterministic quantizer error vs. scrambled error

- Deterministic TDC do not provide inherent scrambling
- For oversampling benefit, TDC error must be scrambled!
- Some systems provide input scrambling (ΔΣ fractional-N PLL), while some others do not (integer-N PLL)

Proposed GRO TDC Structure

A Gated Ring Oscillator (GRO) TDC

- Enable ring oscillator only during measurement intervals
 - Hold the state of the oscillator between measurements
- Quantization error becomes first order noise shaped!
 - e[k] = Phase Error[k] + q[k] q[k-1]
 - Averaging dramatically improves resolution!

Improve Resolution By Using All Oscillator Phases

- Raw resolution is set by inverter delay
- Effective resolution is dramatically improved by averaging 42

GRO TDC Also Shapes Delay Mismatch

- Barrel shifting occurs through delay elements across different measurements
 - Mismatch between delay elements is first order shaped!

Simple gated ring oscillator inverter-based core

Disabled Ring Oscillator

(b)

Gate the oscillator by switching the inverter cores to the power supply

GRO Prototype

Measured GRO Results Confirm Noise Shaping

Measured deadzone behavior of inverter-based GRO

- Deadzones were caused by errors in gating the oscillator
- GRO "injection locked" to an integer ratio of F_s
- Behavior occurred for almost all integer boundaries, and some fractional values as well
- Noise shaping benefit was limited by this gating error

Next Generation GRO: Multi-path oscillator concept

- Use multiple inputs for each delay element instead of one
- Allow each stage to optimally begin its transition based on information from the entire GRO phase state
- Key design issue is to ensure primary mode of oscillation

Multi-path inverter core

Proposed multi-path gated ring oscillator

Hsu, Straayer, Perrott ISSCC 2008

- Oscillation frequency near 2GHz with 47 stages...
- Reduces effective delay per stage by a factor of 5-6!
- Represents a factor of 2-3 improvement compared to previous multi-path oscillators

A simple measurement approach...

- 2 counters per stage * 47 stages = 94 counters each at 2GHz
- Power consumption for these counters is unreasonable

Need a more efficient way to measure the multi-path GRO

Count Edges by Sampling Phase

- A single counter for coarse phase information (keeps track of phase wrapping)
- GRO phase state for fine count information
- I counter and N registers → much more efficient

Proposed Multi-Path Measurement Structure

- Multi-path structure leads to ambiguity in edge position
- Partition into 7 cells to avoid such ambiguity
 - Requires 7 counters rather than 1, but power still OK

Prototype 0.13µm CMOS multi-path GRO-TDC

Two implemented versions:

- 8-bit, 500Msps
- 11-bit, 100Msps version

2-21mW power consumption depending on input duty cycle

Measured noise-shaping of multi-path GRO

- Data collected at 50Msps
- More than 20dB of noise-shaping benefit
- 80fs_{rms} integrated error from 2kHz-1MHz
- Floor primarily limited by 1/f noise (up to 0.5-1MHz)

Measured deadzone behavior for multi-path GRO

- Only deadzones for outputs that are multiples of 2N
 - **94, 188, 282, etc.**
 - No deadzones for other even or odd integers, fractional output
- Size of deadzone is reduced by 10x

The Issue of Quantization Noise Due to Divider Dithering

The Nature of the Quantization Noise Problem

- Increasing PLL bandwidth increases impact of $\Delta\Sigma$ fractional-N noise
 - Cancellation offers a way out!

Previous Analog Quantization Noise Cancellation

- Phase error due to ΔΣ is predicted by accumulating ΔΣ quantization error
- Gain matching between PFD and D/A must be precise

Matching in analog domain limits performance

Proposed All-digital Quantization Noise Cancellation

- Scale factor determined by simple digital correlation
- Analog non-idealities such as DC offset are completely eliminated

Details of Proposed Quantization Noise Cancellation

Proposed Digital Wide BW Synthesizer

- Gated-ring-oscillator (GRO) TDC achieves low in-band noise
- All-digital quantization noise cancellation achieves low out-of-band noise
- Design goals:
 - **3.6-GHz carrier, 500-kHz bandwidth**
 - <-100dBc/Hz in-band, <-150 dBc/Hz at 20 MHz offset</p>

Overall Synthesizer Architecture

Note: Detailed behavioral simulation model available at http://www.cppsim.com

Dual-Port LC VCO

Frequency tuning:

- Use a small 1X varactor to minimize noise sensitivity
- Use another 16X varactor to provide moderate range
- Use a four-bit capacitor array to achieve 3.3-4.1 GHz range

Digitally-Controlled Oscillator with Passive DAC

- Goals of 10-bit DAC
 - Monotonic

DAO

- 1X varactor minimizes noise sensitivity
- 16X varactor provides moderate range
- A four-bit capacitor array covers 3.3-4.1GHz
- Minimal active circuitry and no transistor bias currents
- Full-supply output range

Operation of 10-bit Passive DAC (Step 1)

- 5-bit resistor ladder; 5-bit switch-capacitor array
- Step 1: Capacitors Charged
 - Resistor ladder forms $V_L = M/32 \cdot V_{DD}$ and $V_H = (M+1)/32 \cdot V_{DD}$, where M ranges from 0 to 31
 - N unit capacitors charged to V_H, and (32-N) unit capacitors charged to V_L

Operation of 10-bit Passive DAC (Step 2)

- Step 2: Disconnect Capacitors from Resistors, Then Connect Together
 - Achieves DAC output with first-order filtering
 - Bandwidth = $32 \cdot C_u / (2\pi \cdot C_{load}) \cdot 50 \text{MHz}$
 - Determined by capacitor ratio
 - Easily changed by using different C_{load}

Dual-Path Loop Filter

- Step 1: reset
- Step 2: frequency acquisition
 - V_c(t) varies
 - V_f(t) is held at midpoint
- Step 3: steady-state lock conditions
 - V_c(t) is frozen to take quantization noise away
 - **ΔΣ** quantization noise cancellation is enabled

Fine-Path Loop Filter

- Equivalent to an analog lead-lag filter
 - Set zero (62.5kHz) and first pole (1.1MHz) digitally
 - Set second pole (3.1MHz) by capacitor ratio
- First-order ΔΣ reduces in-band quantization noise

A Closer Look at the Frequency Divider

- Delta-Sigma modulator dithers the divider value
 - Divider must support a range of divide values
 - Want to maintain low jitter as divide value changes

The Issue of Divide Value Delay Variation

Divider input to output delay is a function of divide value

Adds significant jitter for dynamic divide value variation

- We can realize a given divide value as the sum of lower divide values
 - Only pass select edges from higher frequency divider
Application of Divider Concept to Digital PLL

Example: desired frequency division range is 64 to 127

Dithered by a third order Delta-Sigma modulator

Proposed Divider Structure

Increase division frequency by a factor of 4

Only pass one of four divider edges to GRO TDC

Removal of Divide Value Delay Variation

Place ΔΣ dithered edge (N₂) on edge *not* passed to GRO
 Divide value (N₃) is *constant* for edge that passes to GRO

Die Photo of Prototype

- 0.13-μm CMOS
- Active area: 0.95 mm²
- Chip area: 1.96 mm²
- V_{DD}: 1.5V
- Current:
 - 26mA (Core)
 - 7mA (VCO output buffer at 1.1V)
 - GRO-TDC: 2.3mA 157X252 um²

Power Distribution of Prototype IC

Total Power: 46.1mW

Notice GRO and digital quantization noise cancellation have only minor impact on power (and area)

Measured Phase Noise at 3.67GHz

Agilent E5052A Signal Source Analyzer

Suppresses quantization noise by more than 15 dB

- Achieves
 204 fs
 (0.27 degree)
 integrated
 noise (jitter)
- Reference spur: -65dBc

Calculation of Phase Noise Components

See wideband digital synthesizer tutorial available at http://www.cppsim.com

Conclusions

- Digital Phase-Locked Loops look extremely promising for future applications
 - Very amenable to future CMOS processes
 - Excellent performance can be achieved
- A low-noise, wide-bandwidth digital ΔΣ fractional-N frequency synthesizer is achieved with
 - High performance noise-shaping GRO TDC
 - Quantization noise cancellation in *digital* domain
- Key result: < 250 fs integrated noise with 500 kHz bandwidth

Innovation of future digital PLLs will involve joint circuit/algorithm development