Bulk Single Crystal Gallium Nitride Growth

SIDDHA PIMPUTKAR

MATERIALS SCIENCE AND ENGINEERING DEPARTMENT

Lehigh University

IEEE/LVS/SSCS/ED Meeting (Lehigh, Feb 2018)

Why GaN?

Convert **potential energy** of an electron to a **photon**.

Let's say: Electrons = Water Molecules

Flow of Water / Electrons

High Potential Energy

Image after : M. Á. Caro Bayo, Ph.D. Thesis, UCC (2013)

Light Emitting Diode

Light Emitting Diode

7

Size: 0.4 mm x 0.4 mm

Phosphor Strip

White LEDs: 20x more efficient than Incandescent

Huge Savings Potential

Global Energy Savings: 640 mid-sized Power Plants!

The need for *bulk* GaN

Light Emitting Diode

Defects: Non-radiative recombination / diffusion pathways

High Efficiency Devices

Novel Devices

100% polarized emission

m-plane GaN VCSEL (Vertical-cavity surface-emitting laser)

Power Devices

Yesterday (Silicon)

200-V Silicon device (30 mΩ on resistance)

Today (Lateral GaN)

Tomorrow (Vertical GaN)

Rail traction

Wind turbine

Grid energy T&D

Ships and vessels

GaN can prevent **15% of all electrical energy** from being wasted.

Bulk GaN Growth Techniques

Growth from GaN Melt not Possible

Industrial Growth Methods for Bulk GaN

Option 1: **N and Ga** from Gas

T = 1000—1200 °C P = 1 atm

Growth Techniques for GaN

HVPE

High purity Seed dependent quality Growth thickness limited Strain in boule

No lateral scaling

Four major manufactures

Sumitomo Electric, Mitsubishi Chemical, SCIOCS, Saint-Gobain

Specs

Size: 2–4" available, *TD*: mid-10⁵—high-10⁶ cm⁻², *High Purity*

3 inch 0 5 inch 0 9 jinch 0 4 inch 0 6 inch 0

Cost: 500-2000 USD for 2" Wafer

http://global-sei.com/products/compound-semiconductor/

Ammonothermal GaN Seed

Na-Flux GaN Seed

1" Seed + HVPE GaN

7" Tiled Seed + HVPE GaN

HVPE can duplicate high quality seed quality

23

Growth zone dependent lattice constant (impurities) → Cracking

SEM of cross section of edge of HVPE boule

{1011} Facets → Diameter reduction

Continued need for *true* bulk GaN growth method

Option 1: **N and Ga** from Gas

T = 1000—1200 °C P = 1 atm

 $T = 800 - 900 \ ^{\circ}C$ $P = 10 - 100 \ atm$

Na-flux Growth

Growth Techniques for GaN

HVPE

High purity Seed dependent quality Growth thickness limited Strain in boule No lateral scaling

Na-Flux

High purity Scalable

Doping challenges Growth thickness

Coalescence Growth

Large-area-seeded, coalesced GaN thin crystals possible

Y. Mori, et al., ECS J. Solid State Sci. Technol. 2 (2013) N3068–N3071.

Y. Mori, et al. Handbook of Crystal Growth - Bulk Crystal Growth, Elsevier, 2015: pp. 505–533.

Option 1: **N and Ga** from Gas

T = 1000—1200 °C P = 1 atm

Option 2: Add N to Ga Melt

 $T = 800 - 900 \ ^{\circ}C$ $P = 10 - 100 \ atm$

Na-flux Growth

Option 3: Add Ga to N Solution

 $T = 500 - 600 \ ^{\circ}C$ $P = 1000 - 3000 \ atm$

Ammonothermal Method

Growth Techniques for GaN

HVPE

High purity Seed dependent quality Growth thickness limited

Strain in boule No lateral scaling

Na-Flux

High purity Scalable

Doping challenges **Growth thickness**

Ammonothermal

Scalable

Growth rate Gallium vacancies Yield/Uniformity

Target: High Growth Rate, Large Area Boules

Ammonothermal Method

32

Target: High Growth Rate, Large Area Boules

Technology / Engineering	Crystal Properties	Solvent / Solute
Novel Capsule Systems	Optical Properties	Solvent Properties

UHP Growth Environments Growth Rates Effect free carrier density

Point defects

New EOS for NH_3 , N_2 , H_2

Decomposition NH₃

Technology / Engineering

S. Pimputkar, et al., J. Cryst. Growth 456 (2016) 15-20

Impurities

2/26/18

S. Suihkonen, S. Pimputkar, et al., Adv. Electron. Mater. 3 (2017) 1600496

Optical Properties

Study: Optical Absorption on Bulk GaN Crystals

Optical Transmission Measurements

Absorption dominated by free electron absorption

S. Pimputkar, et al., J. Cryst. Growth 423 (2015) 49-53

Heavily doped GaN will be absorbing

V_{Ga}-H_x present (~mid-10¹⁸ cm⁻³) and optically absorbing

S. Suihkonen, S. Pimputkar, et al., Appl. Phys. Lett. 108 (2016) 202105

Solvent Properties

Solvent: Ammonia Phase Diagram

S. Pimputkar and S. Nakamura, J. Supercrit. Flui. 107 (2016) 17-30

Ammonia Decomposition

2/26/18 S. Griffiths et al., J. Cryst. Growth, **456** (2016) 5–14; T. Hashimoto et al., J. Cryst. Growth, **305** (2007) 311–316 48

GaN enables *significant* energy savings and benefits from bulk GaN

Innovative equipment designs opens the door to advances and insight

