



## **Board in UPS**



## **Electric Toothbrush**





DHN Integrated Circuit Design



# Crystal "Q"

"Q" Value Ranges

| RC passive circuit | 0-0.5                           |
|--------------------|---------------------------------|
| IC Inductors       | 4-25                            |
| Golf ball          | 10                              |
| Discrete Inductors | 20-1000                         |
| Church Bell        | 5000                            |
| Crystals           | 10k-3M                          |
| 30-Nov-2009 DF     | IN Integrated Circuit Design 10 |



Basic Gate Crystal Oscillator Start Up



# **Basic Gate Oscillator Steady State**



# Crystal Oscillator Transient Simulations

- Good for:
  - Determining signal amplitude, duty cycle
  - Crystal Drive Level (power dissipation of crystal)
  - Start up characteristics (start up time???)
  - Chewing up lots of computer simulation time
- Does NOT tell much about:
  - Margins over PVT (Process, Voltage, Temperature)
  - Useful frequency range of design
- Why your circuit does not work

30-Nov-2009

DHN Integrated Circuit Design

# Crystal Oscillator Transient Simulation Suggestions

- Select "Options" in Analysis → Choose "tran"
  - Use "traponly"
  - Set "maxstep" to ~1% of target period
- For fast starting, you may need to set an "initial condition" on the "1LC" node in the crystal model.
  - In ADE window: Simulation→Convergence Aids…
     opens "Select Initial Condition Set"
  - Set voltages so some current flows through the inductor.

## Crystal Oscillator Transient Simulation Suggestions (cont)

- I like to use the "Enable" input to start the simulation with the oscillator "off", and then turn it "on".
- Some have used a pulsed current source across the crystal to start.
- Turning on "transient noise" for the "tran" simulation can be useful if you want to start at DC "on" equilibrium, high Q.

30-Nov-2009

## **Crystal Specifications**

- Typically, Crystal Manufacturers provide:
  - Fundamental or Overtone (Harmonic)
  - Target Frequency at a specified CLOAD
  - Target Frequency accuracy (in ppm)
  - Maximum ESR (Effective Series Resistance)
  - Maximum C<sub>SHUNT</sub>
  - Maximum Drive Level
  - Temperature Range, ∆ppm over temperature, or a plot of frequency versus temperature
  - Mechanical information for mounting to PWB
  - Other information pertinent to manufacturing such as soldering temperature information



```
DHN Integrated Circuit Design
```

## **Crystal Information**

- Typical Data Sheets do NOT include:
  - All Crystal Equivalent Circuit Parameters
  - Q value or range
  - Any information about overtones for fundamental mode crystals
  - Any information about fundamental mode for overtone crystals
- Sometimes you can get more information by contacting the manufacturer.

```
30-Nov-2009
```

30-Nov-2009

DHN Integrated Circuit Design



# Fundamental and 3<sup>rd</sup> Harmonic Crystal Model



## **Crystal Impedance**



## **Crystal Reactance**





## **Crystal Tuning**

- Crystals are "Tuned" to a particular frequency tolerance for a specified Cload.
  - Can be "Series" tuned or "Parallel" Tuned
  - Since a Gate oscillator works in the "Parallel Resonance" region, you normally want "Parallel Tuned" crystals

# Crystal C<sub>LOAD</sub>

- C<sub>LOAD</sub> specification:
  - Represents tuning fixture capacitance plus added parallel capacitance across crystal.
  - Larger C<sub>LOAD</sub> provides better immunity (less frequency pulling) due to your board and package parasitic capacitances
  - Smaller C<sub>LOAD</sub> provides:
    - · Lower power dissipation inside crystal
    - Better ability to tweak frequency with trimmer cap.
    - More tuning range with a tuning varactor.



DHN Integrated Circuit Design

## Reactance Plot with CLOAD





## **Crystal Equations**

$$F_{L} = F_{S} \left[ \frac{C1}{2(C0 + C_{LOAD})} + 1 \right]$$

FL = Parallel Load Resonant Frequency (MHz)

- FS = Series Resonant Frequency (MHz)
- C1 = Motional Capacitance (pF)
- C0 = Shunt Capacitance (pF) (i.e. cshunt)

 $C_{LOAD}$  = Load Capacitance (pF)





## ADE Window for GM Cell Oscillator







# GM Cell loopGain Output Set Up

| 100.900     |                                                     |                    |            |               |
|-------------|-----------------------------------------------------|--------------------|------------|---------------|
|             | Setting Outputs Virtuoso® Analog Desi               | gn Environment (1) |            | ×             |
| ·           | Selected Output                                     | Table Of Outputs   |            |               |
|             |                                                     | Name/Signal/Expr - | Valu∈ Plot | Save Option   |
| Name (opt.) | dB_LoopGain                                         | 1 dB_LoopGain      | no         |               |
| Expression  | tData("loopGain" ?result "stb-stb")) From Schematic | 2 Pha_LoopGain     | no         |               |
|             |                                                     | 3 GainMargin       | wave yes   | =             |
| Calculator  | Open Get Expression Close                           |                    |            |               |
| Will be     | Plotted/Evaluated                                   |                    |            |               |
|             |                                                     |                    |            |               |
|             |                                                     |                    |            |               |
| Add         | Delete Change Next New Expression                   |                    |            |               |
|             |                                                     |                    |            |               |
|             |                                                     |                    |            |               |
|             |                                                     | ОК                 | Cancel )   | Apply (Help ) |
|             |                                                     |                    |            |               |
|             |                                                     |                    |            |               |
|             |                                                     |                    |            |               |
|             |                                                     |                    |            |               |
| 30-Nov-2    | 009 DHN Integrated Circuit Des                      | ign                |            | 35            |
|             |                                                     |                    |            |               |

|            | Wittugen (D) Viewalization & Analysis L. Calculator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|            | Elle Tools View Options Constants Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cādenco                                                         |  |  |  |  |
| sing       | Results Dir: none specified     Vt U vf U vd U vs U op U var U vn U sp U vswr U hp U zm     th U if U idc U is U op U mp U vn2 U zp U yp U gd U data                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |  |  |  |  |
| ulator     | ● Off ○ Family ○ Wave   ✔ Clip   录 ▲ ④ Append   ♥   音                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |  |  |  |  |
| t up       | dB20(getData("loopGain" ?result "stb-stb"))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |  |  |  |  |
| and        | ▼ (, () BN 100 M4+ ME   % ⊘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |  |  |  |  |
| ase        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7897                                                            |  |  |  |  |
| of<br>Gain | 1/%         clip         dft         ga         gt         in         phase           10"%         cumpare         dft         gac_gain         gtmx         loadpuil         phase           Rn         compression         dft         gac_gain         harmonic         log10         phase           abs         compression/PRI         dtt/Cycle         gain/Margin         harmonic/Freq         lsb         psd           acos         convolve         evmQAM         gain/Margin         histo         lshift         psdbdddddddddddddddddddddddddddddddddd | 4 5 6 *<br>1 2 3 -<br>0 ± . +<br>user 1 user 2<br>user 3 user 4 |  |  |  |  |
|            | status area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |  |  |  |  |
| 009        | DHN Integrated Circuit Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                                                              |  |  |  |  |

Ca

10

30-N

## GM Cell LoopGain Plot





## Getting dB and phase of loopGain (In ADE Window: Tools→Results Browser)







## Negative Resistance Test Bench



# Negative Resistance Test Bench with feedback resistor added







DHN Integrated Circuit Design



## Gate Oscillator Negative Resistance



#### Gate Oscillator Negative Resistance — NegR 1000-Nearly Rfeedback Value 750 Kiloohms (kΩ) 500 250 Region of Neg. Res. -250 10<sup>3</sup> 104 105 106 $10^{7}$ 10<sup>8</sup> $10^{1}$ $10^{2}$ freq (Hz) 30-Nov-2009 **DHN Integrated Circuit Design**

## Gate Oscillator Negative Resistance



48

# Gate Oscillator Negative Resistance

Rules of Thumb:

- Desirable: The absolute value of the negative resistance should be 10X the maximum ESR.
- Essential: The absolute value of the negative resistance must be 5X the maximum ESR.
  - Applies to your worst PVT corner

# Gate Oscillator Negative Resistance

### Why????

- Potential for low amplitude oscillation
  - No "digital" output from cell
  - An "inverter" will always be near max. current
  - Insufficient drive level
  - Poor duty cycle if there is a "digital" output
- Potential for not oscillating at all

#### 30-Nov-2009

DHN Integrated Circuit Design

Negative Resistance versus Stability Analysis

**DHN Integrated Circuit Design** 

#### **Negative Resistance**

- Covers a broad range of frequencies
- Can infer start up/oscillation from
  - Max.  $C_{LOAD}$
  - Max. ESR

#### **Stability Analysis**

- Gives margin for specific crystal models
- Must run all PVT for each crystal model
  - Lots more simulations

Strategy: Do a significant amount of your design work using Negative Resistance first, run Stability and Transient simulations after your design is stable.

#### 30-Nov-2009

30-Nov-2009

49

## **Transient Simulations needed for**

- Determining or verifying your output duty cycle to core specification
- Average Power draw from the supplies
- Signal Amplitude at terminals
- Crystal Drive level
- I usually use a reduced Q (400 to 1000) to lessen simulation time required. The lowered Q provides accurate information for the above parameters.

# Crystal Oscillator Cell General Requirements

- Although the primary function is to provide a digital output signal based on a crystal based oscillator, two other functions are highly desirable:
- Power Down to a near zero power drain condition
- The ability to drive a signal into the IC core using an ATE source instead of a crystal

**DHN Integrated Circuit Design** 

# Gate Oscillator Internals 1) Basic CMOS Inverter



## Gate Oscillator Internals 2) NMOS Inverter



Advantage: Transconductance and Power more controlled over PVT Drawback: Must design low power Bias Generator that reduces PVT sensitivity.

# Many Other Options

- In published literature, GM cell based approaches have <u>been used.</u>
- Amplitude limiting or a form of AGC can be added to control amplitude of oscillation and drive level
  - AGC dynamics are tricky due to high Q of crystal
  - Getting a low power design requires a more effective way to get large transconductance than the two circuits shown in the previous slides.

30-Nov-2009

30-Nov-2009

# Special Situations Overtone Oscillators

- Require a "trap" to prevent oscillating at the fundamental.
  - An extra inductor is needed outside IC

30-Nov-2009

 Helps by improving negative resistance at the higher frequency





**DHN Integrated Circuit Design** 







# Special Situations "32kHz" Oscillators

- Sub 100kHz oscillators
  - Need a much larger effective feedback resistor
  - Perhaps open loop biasing
  - Tend to be much larger cells physically than MHz range designs
    - Transistor Area is small
    - Resistors take the most area
    - · Capacitors the next most.
    - Low Power→Low Current→Large value bias resistors.

```
30-Nov-2009
```

DHN Integrated Circuit Design

## The Oscillator that wouldn't stop

- The external crystal and two load capacitors are where the high current resonance is.
  - When the oscillator bias is turned of, XOUT dc drops to VSS level, but the oscillation (ringing) signal goes below VSS
  - NTUB resistors were used for ESD protection
  - The two NTUB resistors (output,input) created a lateral NPN transistor.

| -Nov-2009 |  |
|-----------|--|
|-----------|--|

30-Nov-2009

DHN Integrated Circuit Design

# The Oscillator that wouldn't stop (continued)

- Think of the lateral NPN as having its Emitter at XOUT, its collector at XIN, and its base at VSS:
  - Pulling the XOUT below ground turns on the transistor
  - The pull-up PMOS on XIN is not strong enough to dominate, so XIN voltage is pulled to a near normal value, putting the Inverter in an active gain situation, sustaining the oscillation.

# The Oscillator that wouldn't stop (continued)

- Using an external resistor R<sub>DAMP</sub> in the XOUT path limited the emitter current for the parasitic lateral NPN transistor.
  - Now the oscillator stopped as intended.
  - Layout of cell was modified to separate and guard ring NTUB resistors for future designs in that technology.
  - My preference is to use wide poly resistors instead of NWELL/NTUB resistors if possible for the ESD resistors.

6

62

# The Oscillator that ran at 240MHz

- The PWB design was very concerned about skew of his digital bus signals
  - Gave those signals top routing priority
  - Resulted in crystal being placed about 3" from IC
- The inductance of the paths created an LC tank that oscillated instead of the intended crystal oscillation
  - Fixed by cutting path and bridging cut with a resistor to kill the Q of the unwanted tank

# 30-Nov-2009 DHN Integrated Circuit Design 65 30-Nov-2009 DHN Integrated Circuit Design

## My Post-layout simulation doesn't show any negative resistance

- Output buffer had several inverter stages
- At one point, there was a minimal cross over of the output of the third inversion stage to the XIN signal as I recall
  - In this design, the output buffer picked from the XIN to improve duty cycle
  - The inverters were scaled exactly as the one for the core oscillator
  - Caused a Miller multiplication of the capacitance, perhaps a factor ~1000
  - Shielded cross over to eliminate



The Oscillator that wouldn't start

Initially, looking at the crystal signals, appeared

Further investigation revealed about a 900MHz

vias in the PWB paths to the crystal added

Layout was much better than previous case, but

A resistor to kill the Q of the parasitic inductance

66

to be just low level noise

capacitance and inductance

solved the problem

oscillation.

#### 30-Nov-2009

67

## **Measuring Drive Level**

- Using a small resistor (RMEASURE) ~ $1\Omega$  or a current probe in that path measure the ac current (rms)  $I_M$
- The internal current through the ESR resistor should be (1+<sup>Cshunt</sup>/<sub>Cload</sub>) larger.
   Drive Level = ESR (1+<sup>Cshunt</sup>/<sub>Cload</sub>)<sup>2</sup> I<sub>M</sub><sup>2</sup>

## Cload is $\sim^{\text{Cload2}}/_2$

DHN Integrated Circuit Design

69

## **Determining Design Margin**

- Increase RMEASURE until the oscillator won't start up any more.
  - If the value is >>Max. ESR for your crystals, you have adequate margin.

#### Notes:

- 1. Don't use a wirewound potentiometer with lots of inductance
- 2. Be sure you don't add lots of inductance.
  - Perhap use a surface mount resistor 2X Max. ESR

#### 30-Nov-2009

30-Nov-2009

DHN Integrated Circuit Design

#### 70

## **Board Level Considerations**

- 1. Always layout your PWB to make provision for Rdamp.
- 2. The two capacitors to ground and the crystal are the primary resonant circuit
  - Keep very close together
  - Keep ground contact for capacitors together if possible
- 3. Keep the paths from package to crystal short (<1" if possible with minimum of vias.

## Conclusion

- Designing a robust crystal oscillator requires care and attention to details.
- Board Level components and layout are critical to successful design
- I write OCEAN scripts to:
  - Run through the Negative Resistance Curves and extract tables for Data Sheets
  - Run stability analysis over corners and crystal models
  - Run transient simulations as batch jobs
    - Sub-divided by process corner to get parallel effort