

Reducing the Effects of RF Obstructions with Artificial Impedance Surface (AIS) technology

March 9, 2011

Christopher Magnan

Agenda

A.R.A.

- ARA / HRL Collaboration
- AIS Technology
- AIS Fundamental Theory
- AIS Platform Integration and Results
- Current Development
 - Circular Polarization
 - Conformal AIS Appliques
 - Lower Dielectric Material
- Future Development
- Conclusions
- Questions

ARA / HRL AIS Collaboration

- In 2010, ARA and HRL collaborated to integrated a curved AISA surface onto UAV fuselage.
 - ARA learned theoretical concepts of AISA technology
 - ARA designed and fabricated a test platform to characterize the AIS
 - ARA developed manufacturing plans to fabricate AIS PCBs.
- In 2011, ARA and HRL are collaborating to develop a circularly polarized conformal AIS.
- In 2012, ARA will begin environmentally qualifying the conformal AIS.

AIS Technology

- AIS Technology is a synthesized impedance surface that redirects RF radiation past obstruction
- AIS's optical analog of the diffraction grating
 - Surface waves on AIS produce interference pattern.
 - Primary radiation lobe is developed by interference pattern.
 - Lobe angle is frequency dependent.

AIS Competing Technologies

- Electromagnetic Bandgap (EBG)
 - Manufacturing very complex
 - Band-limited
- Dielectric Coatings
 - Not applicable for complex systems
 - Scattering occurs between non-homogenous layers

AIS IS MORE COST-EFFECTIVE AND VERSATILE

AIS Technology: Use the surface of the platform as the aperture

Approach:

- Use fine (<<λ) metal patterns to create large scale (~λ) index variations
 Artificial Impedance Surface
- Large scale (~λ) index variations can produce controlled radiation Microwave holograph

AIS Approaches to Reduce

Apply AIS on an obstruction to capture free space wave and wrap energy around

- Previously demonstrated
- · Less dependent on the excitation source
- Applicable to larger, fixed obstructions

Use AIS to route excitation surface wave energy around obstruction and then radiate it

Dependent on the source excitation

· Nothing to attach to the obstruction

Use AIS to route surface wave energy

around surface curvature

- · Previously demonstrated
- · Dependent on the source excitation
- · Can be used to reduce finite ground plane size affects

All three approaches can be applied to reduce real world structural obstructions/scattering pattern degradations

AVA

AIS Technology Benchmark Metrics

- Beam squint- angle / frequency ratio
- Peak angle
- 3 dB beamwidth
- Peak intensity

AIS Fundamental Theory

AIS Fundamental Theory

· Compute integral of the fields due to the surface wave currents

$$\vec{\mathbf{E}}_{\textit{rad}}\left(\vec{\mathbf{k}}\right) \sim \int_{\mathcal{AB}} \left[\left(\hat{\mathbf{k}} \times \vec{\mathbf{J}}_{\textit{sw}}\left(\vec{\mathbf{r}}\right) \right) \times \hat{\mathbf{k}} \right] - e^{-i\vec{\mathbf{k}} \cdot \vec{\mathbf{r}}} \ d^2r$$

- For flat AISA can simplify to $\vec{\mathbf{E}}_{rad}\left(\vec{\mathbf{k}}\right) \sim \int_{\mathbf{i}\mathbf{l}\mathbf{r}} \left[\left(\hat{\mathbf{k}} \times \vec{\mathbf{j}}_{sw}\left(\vec{\mathbf{r}}\right)\right) \times \hat{\mathbf{k}} \right] e^{i \left[k \int_{0}^{\mathbf{r}} n_{sw}\left(\vec{\mathbf{r}}\right) d\mathbf{r}' \vec{\mathbf{k}} \cdot \vec{\mathbf{r}}\right]} d^{2}r$
- The field term can be written as a product of the surface current's magnitude, $j_{sw}(\vec{r})$, and the field's angular distribution, $\vec{\mathbf{P}} = \left[(\hat{\mathbf{k}} \times \hat{\mathbf{j}}_{sw}(\vec{r})) \times \hat{\mathbf{k}} \right]$
- The radiation angular range limitation is

$$\vec{\mathbf{P}} = \begin{cases} \cos(\phi - \phi_r) \cos(\theta) \hat{\theta} & -\sin(\phi - \phi_r) \hat{\phi}; & TM \\ -\cos(\phi - \phi_r) \hat{\theta} & -\sin(\phi - \phi_r) \cos(\theta) \hat{\phi}; & TE \end{cases}$$

- Vertical polarization is practically limited to 75° from normal by cosine term
- No limitation on horizontal polarization
- Making some approximations of surface wave decay, the far field pattern good approximation for engineering studies
 - Implemented approximation integral in Matlab
 - Good correlation with FastScat simulation for main beam angle and firs few sidelobes

AIS Design Algorithm

Match the surface wave index to the desired plane wave with the AIS grid momentum

$$k_{sw} = k_o \sin \theta_o - k_p$$
 $k_p = \frac{2\pi}{\lambda_s} = k_o \left(n_o - \sin \theta_o \right)$

- k_o is the radiation's free-space wavenumber at the design frequency
- θ_o is the angle of the desired radiation with respect to the AIS normal,
- $k_p = 2\pi \lambda_p$ is the AIS grid momentum where λ_p is the AIS modulation period,
- k_{sw}=n_ok_o is the surface wave's wavenumber, where n_o is the surface wave's refractive index averaged over the AIS modulation

• Replace k_p by integral multiple of the first equations

$$\sin(\theta_m) = n_o - mk_p / k, \quad m = 1, 2, 3, \dots \operatorname{int}\left(\frac{k}{k_m}(n_0 + 1)\right)$$

- -the beam peaks of all modes can be determined, m = 1 is the main lobe
- -This equation can be used to quantify the AISA beam squint which limits bandwidth
- The wavenumber k_o can be expressed as periodic variation in the surface-wave propagation index

 $n_{sw}\left(\vec{\mathbf{r}}\right) = n_o + dn\cos(k_o n_o r - \vec{\mathbf{k}}_o \Box \vec{\mathbf{r}})$

- Control surface wave index with a grid of metal patches
 - Values can be computed with analytic expressions in many cases
 - > Patch size large relative to substrate thickness
 - > Surface wave phase shift per unit cell not close to 180 deg.
 - Can be computed with unit cell simulation
- Index has strong dependence on frequency, especially for higher indexes; this dominates beam squint

 Experience has shown need for scaling factors to match theory with measurements, but once determined (for substrate and freq.) can be used for design

- Exact reasons not clear, but think it is related to
 - > Finite surface affects
 - Varying index
- This is topic area for future research

• AIS beam squint can be expressed as

- AIS modulation's Floquet term
- To eliminate beam squint would need negative dispersion
 - Possible with active circuits?
 - Topic area for further research
- From our experience the AIS's dispersion is significant
- Most straight forward way to increase bandwidth is to reduce the average AIS index

 $\frac{dn_o}{dk} = -\frac{k_p}{k^2}$

 $\frac{d\theta}{dk} = \frac{1}{\cos\left(\theta\right)} \left(\frac{dn_o}{dk} + \frac{k_p}{k^2}\right)$

AKA

AISA Platform Integration

Obstruction ARA Characterization

Obstruction Characterization

ARA

Frequency (GHz)

HRI AISA ARA Characterization Setup

ACIN Elevation Characterization

IO.6 GHz

AIS Design Approach

Empirically derive surface wave and modulation indices

Characterize Flat Panel Designs
Optimize AIS bandwidth / decrease beam squint

Curve AISA to achieve near horizon coverage

Compensate for finite ground plane
Extend coverage beyond AIS angle limitations

Optimize pattern on AIS to mitigate the obstacles

Strut Effect

ARA.

Surface Waveguide MARA.

- Index is tailored by selectively removing metal to produce a region of comparatively low surface-wave index.
 - Low-index region guides surface-wave energy away from it
 - Physically analogous to a dielectric waveguide

HE Curved AIS with ARA Optimized Waveguide

AIS Comparison to Aluminum Sheet

ARA

HRL

AIS Comparison to Aluminum Sheet

12.2 GHz

12.4 GHz

— Aluminum Sheet — Waveguide Curved AISA

CURRENT AIS EFFORT

HRI Circularly MARA Polarized AIS Design

Conformal Applique

Forming high dielectric material.

 Existing substrates teflon impregnated
 Vacuum-formable?

 Three dimensional transformation from

 Three dimensional transformation from flat panel to applique.

Lower Dielectric Materials

- Low dielectric materials cheaper, but require thicker material.
- Dielectric material thickness ratio changes by square-root of initial dielectric / final dielectric ratio.
- Thermo-plastic material in this range.
 - Vacuum-forming process forms applique

Proposed Future Development

- Investigate other frequency bands (Cellular, ISM, FRS)
- Integrate AIS onto other platforms
- Explore other commercial applications for technology
- Develop baseline AIS synthesis tools
- Environmentally qualify the AIS

Conclusions

- AIS is a cheap and versatile technology that minimizes RF obstructions
- Further research needed to expand bandwidth, theoretically predict indices, and optimize design techniques
- Lower dielectric material not explored

