Challenges in practical design of planar arrays

M. Martínez Vázquez, A. Bettray, R. Baggen, S. Holzwarth, O. Litschke, C. Oikonomopoulos-Zachos, B. Sanadgol, W. Simon, P. Uhlig

IMST GmbH, Kamp-Lintfort, Germany

IEEE APS DLP August 2011

IMST GmbH: facts & figures

♦IEEE

Target markets

- \rightarrow Telecom and IT
- \rightarrow Automation
- \rightarrow Automotive
- → Medical Device
- \rightarrow Security
- → Space

Full wave 3D FDTD simulation

For ADS™ Library for multilayered elements Integrated in Agilent ADS™

IEEE

In-house Technology & Prototyping

- \rightarrow Clean rooms: class 100 to 10,000
- \rightarrow Thin film and thick film technology
- \rightarrow Hybrid circuits, bonding
- \rightarrow Etching techniques
- → Fast prototyping
- \rightarrow LTCC capabilities

EEEE

Measurements & testing

- → Indoor nearfield / farfield
- → 3D air-interface characterisation of mobile devices
- → Specific Absorption Rate (SAR)
- \rightarrow RF measurements up to 110 GHz
- \rightarrow CE certification

LAB CODE 20070212-00

EEEE

Scope of the talk

- \rightarrow Introduction
- \rightarrow Why planar arrays?
- \rightarrow Technological considerations
- \rightarrow Simulation
- → Measurements
- \rightarrow Examples
- → Outlook

Scope of the talk

\rightarrow Introduction

- \rightarrow Why planar arrays?
- \rightarrow Technological considerations
- \rightarrow The challenge of simulation
- → Measurements
- \rightarrow Examples
- \rightarrow Outlook

Goal Unlimited number of wishes Limited resources Limited number of runs Which antenna ??? Final Goal: a working system !!! M mmv, IEEE-DLP 2011 © IMST GmbH - All rights reserved

♦IEEE

Design cycle

Scope of the talk

- \rightarrow Introduction
- \rightarrow Why planar arrays?
- \rightarrow Technological considerations
- \rightarrow The challenge of simulation
- → Measurements
- \rightarrow Examples
- \rightarrow Outlook

FFF

Arrays vs. fixed aperture antennas

 \rightarrow More precise control of the radiation pattern

- Lower sidelobes
- Pattern shaping
- \rightarrow Possibility of electronic beam scanning

A couple of equations...

 \rightarrow Power received by the RX antenna

$$P_r = A(\theta, \phi) W$$

 \rightarrow Power density at a distance *r* of the TX antenna

$$W(\theta,\phi) = \frac{G(\theta,\phi)}{4\pi r^2} P_t$$

 \rightarrow Effective area of the RX antenna

$$A(\theta,\phi) = \frac{\lambda^2 G(\theta,\phi)}{4\pi}$$

... or, in other words:

$$P_r = \frac{\lambda^2 G_r G_t}{\left(4\pi r\right)^2} P_t$$

→ P_r decreases as the square of the distance (1/r²) → P_r increases as the square of the wavelength (λ^2) → P_r decreases as the square of the frequency (1/f²)

That means:

 \rightarrow To increase the gain, larger apertures, that is, larger arrays are needed

♦ IEEE

- \rightarrow Passive arrays: large gain = narrow beamwidth
- \rightarrow By controlling amplitude and phase of the excitation of each element:
 - Beamsteering

Scope of the talk

- \rightarrow Introduction
- \rightarrow Why planar arrays?

\rightarrow Technological considerations

- \rightarrow The challenge of simulation
- → Measurements
- \rightarrow Examples

Technological aspects

- \rightarrow Choosing the right substrate
 - Soft substrates (PTFE)
 - Hard substrates (LTCC, HTCC)
- → Feeding strategy
 - Probe, microstrip, coupling...
 - Series, tree, corporate...
- → Number of layers
- → Technological limitations:
 - Line width
 - Via spacing
- → Technological parameters
 - Nominal values vs. real parameters
 - "Discrete" values
 - Material and manufacturing tolerances

PTFE or LTCC??

PTFE

- \rightarrow Good stability of permittivity
- \rightarrow High TCE (close to Cu and Al)
- → Possibility of multilayer with prepeg technology
- → Large circuit areas, >50x50cm²
- → Low production cost for low and medium volumes

LTCC

- → Good stability of permittivity
- → Better thermal conductivity
- \rightarrow Low TCE (close to Si and GaAs)
- \rightarrow Indicated for multilayer modules
- → Robust against environmental influence
- → Low production price for medium and high volumes

Example of multilayer structures (prepeg)

RO 4450	170µm
RO 4450	190µm
RO 4350B	160µm
RO 4450	190µm
RO 4450	170µm

Example of multilayer structures LTCC

EEEE

Examples

LTCC antennas @ 24 GHz

Antenna @ 60 GHz

The problem of losses

♦IEEE

The problem of losses (radiating lines)

♦IEEE

The problem of losses (non-radiating lines)

Effect of the metallisation

- \rightarrow Conductivity as function of frequency
- → Conductor roughness
 - more than x2 increase in conductor loss (experimentally demonstrated)
 - Effect on effective permittivity
- \rightarrow "Saturation" does not occur, at least up to 50 GHz
 - Thinner metallisation: lower loss than thicker ones (even for HF)
- \rightarrow Influence of conductor profile on phase constant
 - especially in thinner substrates
 - larger effect than predicted simply by including the loss
 - seems related to the profile itself.

Manufacturing

High frequencies

- \rightarrow High resolution needed (<10 μ m)
- → Smooth surfaces needed:
 - Dielectrics: thickness control (impedance)
 - Conductors: minimise skin effect
- \rightarrow Drawback: poor adhesion between metal and dielectric
- \rightarrow Historically:
 - high profile ("rough") foils: used to increase adhesion to the substrate
 - lower profile foils: to improve etch definition or reduce conductor loss.

Standard

Reverse treated

The problem of permittivity

- → Sheet measurement technique: measure the capacitance of a very large sheet of known thickness to obtain the permittivity value
- → Measurement only at certain frequencies
- → Ex: IPC TM 650 2.5.5.5: X band:

"Limitations: The following limitations in the method should be noted. Users are cautioned against assuming the method yields permittivity and loss tangent values that directly correspond to applications. The value of the method is for assuring consistency of product and thus reproducibility of results in fabricated boards.

The measured effective permittivity for the resonator element can differ from that observed in an application."

The problem of permittivity

- → Values differ from actual permittivity: experience needed!!!
 - Use recommended value, not nominal!
 - Define test structures (lines, ring resonators)
- \rightarrow Effect of permitivity deviation
 - Mismatching
 - Deformation of radiation pattern (wrong operating frequency)
 - Assymetry, squinting

Example: array @ 24 GHz

♦IEEE

Example: LTCC material (1)

Example: LTCC material (2)

♦IEEE

Example: LTCC material (3)

- \rightarrow Layer thickness: 105µm-123µm (manufacturing tolerances)
- $\rightarrow \Delta h$ = 1 μ m => δ f~600 MHz @ 60 GHz

Scope of the talk

- \rightarrow Introduction
- \rightarrow Why planar arrays?
- \rightarrow Technological considerations

\rightarrow The challenge of simulation

- → Measurements
- \rightarrow Examples
- \rightarrow Outlook

The challenge of simulation

- \rightarrow Antenna size
- \rightarrow Detailed description of the structure
- \rightarrow Number of elements
- \rightarrow Simplified simulation vs. whole structure
 - Effect of coupling
 - Feeding networks
- → Feeding / interfaces
- \rightarrow Advances:
 - Hardware
 - Software

 \rightarrow Importance of the user's experience!!!

FFF

GEEEE

Single element Тχ • • Rx1 Rx2 → Frequency \rightarrow Polarisation... 6 I M S mmv, IEEE-DLP 2011 © IMST GmbH - All rights reserved

Array (Tx)

Whole antenna system Тχ • Rx1 Rx2 \rightarrow Coupling / interaction \rightarrow Final check 0

I M S

Cluster solver

- → Efficient use of multiple PCs for reduced simulation time
- → One simulation job on multiple PCs within a network
- → Use of standard PCs vs. expensive server workstation with hundreds of GBytes of memory
- → Example: 100 GB problem on 10 x 12 GB

Multilayer Antenna: FDTD Performance

7000 6500 6000

2 3

4 5

0

7 8 9 10 11 12 13 14 15 16 17

- \rightarrow 24 GHz radar antenna
- → mesh: 80 x 2933 x 1846 cells (433 Million cells)
- → resolution 25 μ m < Δ < 765 μ m
- → memory usage: 12 GB
- \rightarrow simulation time 45min .. 10h

6

n cluster PC's (Intel I7 920 @ 2.66 GHz)

30 GHz DBF LTCC Antenna-Module

- Accer
- → RF frontend incl. 8x8 array antenna:
- → 16 LTCC layers
- \rightarrow 17 metallization layers
- → integrated 90° hybrid circuit, calibration network, LO feed network,...
- → simulation from PA output (incl. bond wire connection) to antenna
- → simultaneous excitation of all 64 ports
- → Simulation time < 9 h (Multi PC: < 4h); Memory usage ~20 GB
- \rightarrow 600 Million cells ; grid: 10 µm < Δ < 215 µm

Antenna feed, 30 GHz DBF LTCC Antenna Module

Scope of the talk

- \rightarrow Introduction
- \rightarrow Why planar arrays?
- \rightarrow Technological considerations
- \rightarrow The challenge of simulation
- → Measurements
- \rightarrow Examples
- \rightarrow Outlook

Measurements

- → Farfield measurements: not enough information to pinpoint simulation discrepancies (manufacturing defects, unexpected losses, mechanical tolerances...)
- → Nearfield measurements: powerful insight into the characteristics of patch arrays:
 - Coupling and general interactions between radiating elements
 - Effect of the feeding network
- → Field sampling in **amplitude** and **phase**:
 - radiated waves (nearfield-to-farfield transformation)
 - very near fields of the antenna (current distribution on the patches)

Example: 24 GHz antenna

\rightarrow Radar antenna for automotive applications

- Array of 8x12 microstrip patches
- 24 GHz ISM frequency band
- Structure size: 75 mm x 50 mm
- Substrate: 600 μ m thick, ϵ_r =3.66
- Feeding network on the backside

→ Target:

- Maximum gain
- Main beam pointing: broadside direction
- Symmetrical radiation with respect to broadside
- First sidelobe: -20 dB
- Sidelobe level better than -25 dB for angles beyond 35°

Farfield measurements

- \rightarrow Good results in terms of gain (around 20 dBi)
- \rightarrow Symmetrical main beam
- \rightarrow Sidelobes higher than desired

♦IEEE

Nearfield measurements

- → Amplitude distribution
 - vertical component, electric near field
 - corresponds to the desired tapering in X and Y directions
- → Phase distribution
 - not completely uniform
 - relatively high variation over the antenna aperture
 - large phase variation at the last T-junctions (outer elements)
 - Differences must be compensated: adjust the dimensions of the feeding network and/or the patches

Tuning of the antenna

Adjustment of length and widths of the line sections

- \rightarrow Gain increased by 0.5dB
- \rightarrow Significant improvement in the side lobe levels
 - -25dB in the azimuth
 - -19dB in elevation.

EFF

Scope of the talk

- \rightarrow Introduction
- \rightarrow Why planar arrays?
- \rightarrow Technological considerations
- \rightarrow The challenge of simulation
- → Measurements

\rightarrow Examples

 \rightarrow Outlook

FFF

Multilayer antennas for 24 GHz radar (2)

- → Integration of Tx and Rx antennas on one PCB
- \rightarrow Serial feed to minimise number of layers
- \rightarrow Customised pattern design
- → Steerable/Multibeam capability
- \rightarrow High resolution
- → Combination of short/range sensory

FFF

Antenna with near field at 24 GHz

Backside feeding network with housing

- \rightarrow 7 x 24 patches for Tx & Rx, size: 80 mm x 170 mm
- \rightarrow Dielectric thickness ~ 1mm, 4 metal layers
- \rightarrow 0201 SMD resistors for Wilkinson dividers & loads
- \rightarrow Thickness casing 1.5 mm
- \rightarrow Min. necessary resolution ~25 µm

Antennas for mobile SatCom

Requirements:

Communication link from moving platform \rightarrow

EEEE

NATALIA*: Ku-band receive antenna

Electronic beamforming in Ka-band*

General Profile:

- \rightarrow 4x4 and 8x8 antenna array
- \rightarrow Building block for large arrays
- → Mobile satellite communication to GEOs
- → Electronic beamforming
- → Downlink 20 GHz
- → Uplink 29.5 30.0 GHz (transmit mode)

* funded by DLR Bonn, Germany

See: S. Holzwarth & al, "Highly integrated antennas and front-ends for 60GHz WLAN Applications", Proc. of EUCAP 2011.

Antennas for WPAN: typical scenarios

- → Frequency: 60 GHz
- \rightarrow Data rate up to 7 GBit/s (WiGig)

- \rightarrow TX / RX in a single LTCC block
- \rightarrow Balanced-fed antennas for optimised power transfer

* funded by the Ministry of Education and Research (BMBF), Germany

Μ

See: M. Martínez-Vázquez & al, "Highly integrated 8×8 antenna array demonstrator on LTCC with integrated RF circuitry and liquid cooling ", International Journal of Microwave and Wireless Technologies, volume 3, issue 02, 2011, pp. 157-170. mmv, IEEE-DLP 2011 © IMST GmbH - All rights reserved

- \rightarrow LTCC-filled cavities, via walls
- \rightarrow WG to stripline transition for measurements

Steerable array for wireless HDTV

- \rightarrow Electronic beamforming
- \rightarrow Data rate: up to 4 GBit/s
- \rightarrow LTCC-filled cavity antennas
- \rightarrow Feeding: waveguides integrated in LTCC substrate

See: B. Sanadgol, S. Holzwarth, A. Milano, R. Popovich "60 GHz Substrate Integrated Waveguide Fed Steerable LTCC Antenna Array", Proc. of EUCAP 2010.

Scope of the talk

- \rightarrow Introduction
- \rightarrow Why planar arrays?
- \rightarrow Technological considerations
- \rightarrow The challenge of simulation
- → Measurements
- \rightarrow Examples
- → Outlook

FFF
Electronicaly steerable arrays

Phased Array

→ Switching between predefined states

low

- → phase and amplitude in RF
- \rightarrow shifters
- \rightarrow low system flexibility

Digital Beamforming

- → phase and amplitude in baseband
- → complete Rx/Tx circuitry for each element
- \rightarrow high system flexibility
- → high packaging density

high

Complexity & flexibility

EEEE

mmv, IEEE-DLP 2011 © IMST GmbH - All rights reserved

Challenges for planar arrays

- \rightarrow Active antennas
- →High gain
- \rightarrow High integration
- →Beamforming
- \rightarrow Thermal dissipation

Thank you for your attention!

martinez@imst.de

For more information please visit:

http://www.imst.com

IEEE DLP August 2011 I M S