Development of Dielectric Resonator Antenna (DRA)

K. W. Leung

State Key Laboratory of Millimeter Waves \&
Department of Electronic Engineering,
II City University of Hong Kong

Outline

I. Introduction
II. Circularly Polarized DRA Using a Parasitic Strip
III. Frequency Tuning Technique
IV. Omnidirectional Circularly Polarized DRAs
V. Dualband \& Wideband DRAs
VI. Dualfunction DRAs

What is Dielectric Resonator Antenna (DRA)?

- The DRA is an antenna that makes use of a radiating mode of a dielectric resonator (DR).
- It is a 3-dimensional device of any shape, e.g., hemispherical, cylindrical, rectangular, triangular, etc.
- Resonance frequency determined by the its dimensions and dielectric constant ε r.

Some DRs :

Advantages of the DRA

- Low cost
- Low loss (no conductor loss)
- Small size and light weight
- Reasonable bandwidth ($\sim 10 \%$ for $\varepsilon r \sim 10$)
- Easy of excitation
- High radiation efficiency (generally > 95\%)

Excitation schemes

(i) Microstrip line feed

Excitation schemes

(ii) Aperture-couple feed

Excitation schemes

(iii) Coaxial feed

Coaxial feed

Top view

Bottom view

Aperture-coupled feed

Bottom view

Top view

Corporate feedline for DRA array

Slot-fed DRA array using corporate microstrip feed network

Conformal-Strip Method

Proposed Antenna Geometry

a (mm)	b (mm)	d (mm)	l_{1} $(\mathrm{~mm})$	W_{1} $(\mathrm{~mm})$	ε_{r}
14.3	25.4	26.1	10	1	9.8

Analytical Solution

- Dielectric Waveguide Model (DWM)

Resonant frequency of $\mathrm{TE}_{\mathrm{mnl}}(\mathrm{y})$ mode

$$
\begin{aligned}
& f_{0}=\frac{c}{2 \pi \sqrt{\varepsilon_{r}}} \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}} \\
& k_{x}=\frac{m \pi}{a}, k_{y}=\frac{n \pi}{b}, k_{z}=\frac{l \pi}{2 d} \\
& k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\varepsilon_{r} k_{0}^{2}
\end{aligned}
$$

Numerical Solution

-Finite-Difference Time-Domain (FDTD) method

Advantages

- Very simple
- High modeling capability for general EM structures
- No spurious modes nor large matrix manipulation
- Provide a very wideband frequency response

Disadvantages

- Time consuming, powerful computer required

Source model and extraction of S parameters

Baseband Gaussian pulse

$$
E_{z}=\exp \left[-(\Delta t \cdot n-3 T)^{2} / T^{2}\right] \mathrm{T}: \text { pulse width }
$$

Parameters

Uniform Cartesian grids
$\Delta x=0.715 \mathrm{~mm}, \Delta y=0.508 \mathrm{~mm}, \Delta z=0.5 \mathrm{~mm}$
$\mathrm{T}=0.083 \mathrm{~ns}, \mathrm{t}_{0}=3 \mathrm{~T}$
10-cell-thick PML with polynomial spatial scaling
($\mathrm{m}=4$ and $\kappa_{\text {max }}=1$)
total grid size : $80 \Delta x \times 110 \Delta y \times 112 \Delta z$
total time steps : 10000

Input Impedance/ S_{11}

- Reasonable agreement.
- Wide Bandwidth of $\sim 43 \%$.
- Dual resonant $\mathbf{T E}_{111}{ }^{\mathrm{y}}$ and $\mathrm{TE}_{113}{ }^{\mathrm{y}}$ modes are excited.

Comparison between Theory and Measurement

Resonant Modes	Measured resonant frequencies		Calculated resonant frequencies (FDTD)		Predicted resonant frequencies (DWM)	
	$f_{\text {mea }}(\mathrm{GHz})$	$f_{\text {FDTD }}$ $(G H z)$	error $(\%)$	$f_{\text {DWM }}$ $(G H z)$	error $(\%)$	
TE_{111}^{y}	3.81	3.90	2.3	3.95	3.6	
TE_{112}^{y}	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	4.26	$\mathrm{~N} / \mathrm{A}$	
TE_{113}^{y}	4.57	4.60	0.7	4.7	1.7	

- Reasonable agreement.

Field Distribution --- $\mathrm{TE}_{111}{ }^{\mathbf{y}}$

Imaged DRA (gound plane removed)

Field Distribution --- $\mathrm{TE}_{112}{ }^{\mathbf{y}}$

Imaged DRA (gound plane removed)

Field Distribution --- $\mathrm{TE}_{113}{ }^{\mathrm{y}}$

Imaged DRA (gound plane removed)

With gound plane

Radiation Patterns

$$
f=3.5 \mathrm{GHz}
$$

$$
f=4.3 \mathrm{GHz}
$$

- Broadside radiation patterns are observed.
- Measured E-plane crosspolarized fields mainly caused by finite ground plane diffraction.

Proposed Antenna Geometry

a $(\mathrm{~mm})$	b $(\mathrm{~mm})$	d $(\mathrm{~mm})$	l_{1} $(\mathrm{~mm})$	W_{1} $(\mathrm{~mm})$	l_{2} $(\mathrm{~mm})$	W_{2} $(\mathrm{~mm})$	ϕ_{0} $($ degree $)$	ε_{r}
24	23.5	12.34	10	1	12	1	225.6	9.5
26								

Input Impedance/ \mathbf{S}_{11}

- Reasonable agreement.
- Bandwidth ~ 14\%.
- Two nearly-degenerate $\mathrm{TE}_{111}(\mathrm{y})$ modes are excited.
$\Rightarrow \mathrm{CP}$ operation

Axial Ratio in the boresight direction

$3-\mathrm{dB}$ AR bandwidth is $\sim 2.7 \%$, which is a typical value for a singly-fed CP DRA.

The H field of the DRA without and with parasitic

 strip (Top view)

$$
3.4 \mathrm{GHz}
$$

With parasitic strip - CP field

Radiation Patterns $(f=3.4 \mathrm{GHz}$,)

- A broadside radiation mode is observed.
- For each radiation plane, the LHCP field is more than 20 dB stronger than the RHCP field.
- The maximum gain is 5.7 dBic (not shown here).

Effects of feeding strip length l_{1}

- Input impedance changes substantially with l_{1}.
- AR is almost unchanged for different l_{1}.
- l_{1} can be adjusted to match the impedance without changing AR.

Backgruond

- The DRA for a paticular frequency may not be available from the comericial market.
- Fabrication tolerances cause errors between measured and calculated resonant frequencies.
- Frequency tuning methods:
(i) loading-disk; and
(ii) parasitic slot.

The slot-coupled DRA with a conducting loading

cap

Side view

- Hemispherical DRA: radius $a=\mathbf{1 2 . 5} \mathbf{m m}$, dielectric constant $\varepsilon_{r}=\mathbf{9 . 5}$.
\bullet Coupling slot : length L_{s}, width W_{s}
-Open-circuit stub: length L_{t}
\bullet Grounded dielectric slab: $\varepsilon_{r s}=2.33$, height $d=1.57 \mathrm{~mm}$
- Microstrip feedline: width $W_{f}=4.7 \mathrm{~mm}$

Calculated and measured return losses

$\left(L_{\mathrm{s}}=12 \mathrm{~mm}\right.$ and $W_{\mathrm{s}}=1 \mathrm{~mm}$)

Resonance frequency:

- 3.52 GHz without any conducting cap $\left(\alpha=0^{0}\right)$, with $L_{\mathrm{t}}=4.42 \mathrm{~mm}$
- $3.25 \mathrm{GHz}\left(\boldsymbol{\alpha}=26.38^{\circ}\right.$ and $\left.L_{\mathrm{t}}=4.42 \mathrm{~mm}\right)$
- $3.68 \mathrm{GHz}\left(\boldsymbol{\alpha}=52.8^{\circ}\right.$ and $\left.L_{\mathrm{t}}=13.6 \mathrm{~mm}\right)$

Calculated and measured radiation patterns

- Reasonable agreement between theory and experiment.
- The effect of loading cap on field pattern is not significant.
$3.58 \mathrm{GHz}\left(\boldsymbol{\alpha}=52.8^{\circ}\right.$ and $\left.L_{\mathrm{t}}=13.6 \mathrm{~mm}\right)$

Calculated α and L_{t} for having a good return foss (minimum $\left|S_{11}\right|<-20 \mathrm{~dB}$)

The resonant frequency can be tuned by varying α and $L_{\text {t }}$

- α decreases from 26.38° to $0^{\circ}\left(3.25<f_{\mathrm{r}}<3.5 \mathrm{GHz}\right)$
- α increases from 0° to $52.8^{\circ}\left(3.5<f_{\mathrm{r}}<3.78 \mathrm{GHz}\right)$

Impedance bandwidth

- The bandwidth decreases after a loading cap is added.

The annular-slot-excited cavity-backed DRA

(a) Side view

(b) Top view

Advantages of omnidirectional CP antenna

- Provide larger coverage.

CP DRAs concentrated on broadside-mode designs only.

Design I:

Slotted omnidirectional CP DRA

Antenna configurations

Perspective view

SMA connector
Front view
$>$ Dielectric cube with oblique slots (polarizer) fabricated on its four sidewalls.
$>$ Centrally fed by a coaxial probe extended from a SMA connector, whose flange used as the small ground plane.

Antenna principle

LP omnidirectional DRA

Dielectric block with the wave polarizer

Proposed compact omnidirectional CP DRA

Photographs of the prototype

Prototype for 2.4 GHz WLAN design

Top face and sidewalls

Bottom face

Design parameters

$\varepsilon_{r}=15, a=b=39.4 \mathrm{~mm}, h=33.4 \mathrm{~mm}, w=9.4 \mathrm{~mm}$,
$d=14.4 \mathrm{~mm}, r_{1}=0.63 \mathrm{~mm}, l=12.4 \mathrm{~mm}, g=12.7 \mathrm{~mm}$

Simulated and measured results

Reflection coefficient

Impedance bandwidth:
Simulated: 20.3\% (2.34-2.87 GHz)
Measured: 24.4% (2.30-2.94 GHz)

Axial ratio

AR bandwidth:
Simulated: 8.2% (2.34-2.54 GHz)
Measured: 7.3% (2.39-2.57 GHz)

Simulated and measured radiation patterns

- Very good omnidirectional characteristic
- In the horizontal plane, LHCP fields > RHCP fields by $\sim 20 \mathrm{~dB}$.

Simulated and measured antenna gain

Design II:

Wideband omnidirectional CP antenna with parasitic metallic strips

Antenna configurations

Perspective view

Front view

- Four parasitic metallic strips are embedded in the lateral slots to enhance the AR bandwidth.
- The hollow circular cylinder is introduced to enhance the impedance bandwidth.

Photographs of the prototype

Prototype for 3.4 GHz WiMAX design

Top face and sidewalls

Bottom face

Design parameters

$\varepsilon_{r}=15, a=b=30 \mathrm{~mm}, h=25 \mathrm{~mm}, r=3 \mathrm{~mm}, w=7 \mathrm{~mm}, d=10.5 \mathrm{~mm}$
$l_{s}=30.5 \mathrm{~mm}, w_{s}=1 \mathrm{~mm}, x_{0}=6.4 \mathrm{~mm}, r_{1}=0.63 \mathrm{~mm}, l=19 \mathrm{~mm}$.

Simulated and measured reflection coefficient and axial ratio

Impedance bandwidth:
Simulated: 22.3% (3.11-3.89 GHz)
Measured: 24.5% (3.08-3.94 GHz)
AR bandwidth:
Simulated: 24.8\% (3.11-3.99 GHz)
Measured: 25.4% (3.16-4.08 GHz)

Overlapping bandwidth: 22.0%; bandwidth widened by ~ 3 times.

Simulated and measured results

Antenna gain

Radiation efficiency

$>$ Measured gain: wider bandwidth.
$>$ Measured antenna efficiency: 84-98\% (3.1-3.9 GHz).

Simulated and measured radiation patterns

3.4 GHz

3.8GHz
$>$ LHCP fields > RHCP fields by more than 15 dB in horizontal plane.
$>$ Stable radiation patterns across the entire passband ($3.1-3.9 \mathrm{GHz}$).

Background

- Dualband and wideband antennas are extensively used (e.g., WLAN)
- Multi-element DRA [1]
- requiring more DR elements and space
- Hybrid slot-DRA [2]
- coupling slot used as the feed and antenna
- inflexible in matching the impedance
[1] Petosa, N. Simons, R. Siushansian, A. Ittipiboon and C. Michel, "Design and analysis of multisegmentdielectric resonator antennas," IEEE Trans. AP, vol.48, pp.738-742, 2000.
[2] Buerkle, K. Sarabandi, and H. Mosallaei, "Compact slot and dielectric resonator antenna with dual-resonance, broadband characteristics," IEEE Trans. AP , vol. 53, pp.1020-1027, 1883.

Use of higher-order DRA

- Wideband DRA [1]
- Dualband DRA [2]
- Trial-and-error approach is normally used
- Systematic design approach is desirable
[1] B. Li and K. W. Leung, "Strip-fed rectangular dielectric resonator antennas with/without a parasitic patch," IEEE Trans. Antennas Propagat., vol.53, pp.2200-2207, Jul. 2005.
[2] T. H. Chang and J. F. Kiang, "Dual-band split dielectric resonator antenna," IEEE Trans. Antennas Propagat., vol.55, no.11, pp.3155-3162, Nov.2007.

Design Formulas for Dual-Mode rectangular DRA

- The E-field should vanish on the PEC and the TE_{112} mode cannot be excited properly.
- The TE_{111} mode and TE_{113} mode are used in the dualmode design.

Formula Derivation

The wavenumbers $k_{x 1, x 2}$ and $k_{z 1, z 2}$ can be written as follows:

$$
\begin{aligned}
& k_{z 2}=\frac{3 \pi}{2 d} \\
& k_{z 1}=\frac{\pi}{2 d} \\
& k_{x 1}=k_{x 2}=\frac{\pi}{a}
\end{aligned}
$$

From the DWM model, the frequencies f_{1}, f_{2} are given by:

$$
f_{1,2}=\frac{c}{2 \pi \sqrt{\varepsilon_{r}}} \sqrt{k_{x 1, x 2}^{2}+k_{y 1, y 2}^{2}+k_{z 1, z 2}^{2}}
$$

where

$$
\begin{equation*}
k_{y 1, y 2}=\sqrt{k_{1,2}^{2}-k_{x 1, x 2}^{2}-k_{z 1, z 2}^{2}} \tag{*}
\end{equation*}
$$

in which $k_{1,2}=2 \pi \sqrt{\varepsilon_{r}} f_{1,2} / c$ are wavenmubers in the dielectric, with c being the speed of light in vacuum.

Engineering Formulas for the DRA dimensions

$$
\begin{aligned}
& a=\frac{10.32}{\sqrt{9 k_{1}^{2}-k_{2}^{2}}}+10.32^{-\left(3.96-\frac{f_{2}}{f_{1}}\right)} \\
& d=\pi \sqrt{\frac{2}{k_{2}^{2}-k_{1}^{2}}}+\Delta d \\
& b=0.65 b_{1}+0.35 b_{2}
\end{aligned}
$$

where

$$
\begin{gather*}
\Delta d=\left[0.1393\left(\frac{f_{2}}{f_{1}}\right)^{4}-2.3209\left(\frac{f_{2}}{f_{1}}\right)^{3}+11.4422\left(\frac{f_{2}}{f_{1}}\right)^{2}-23.4984\left(\frac{f_{2}}{f_{1}}\right)+18.4437\right] \times 10^{-3} \tag{m}\\
b_{1,2}=\frac{2}{k_{y 1, y 2}} \tan ^{-1} \sqrt{\left(1-\frac{1}{\varepsilon_{r}}\right)\left(\frac{k_{1,2}}{k_{y 1, y 2}}\right)^{2}-1}
\end{gather*}
$$

Limit of frequency ratio f_{2} / f_{1}

From

$$
a=\frac{10.32}{\sqrt{9 k_{1}^{2}-k_{2}^{2}}}+10.32^{-\left(3.96-\frac{f_{2}}{f_{1}}\right)}
$$

We have

$$
9 k_{1}^{2}-k_{2}^{2} d \geq 0 \quad \Rightarrow \quad 3 k_{1}>k_{2} \text { or } 3 f_{1}>f_{2}
$$

giving

$$
f_{2} \mid f_{1}<3
$$

which is the theoretical limit that is not known before.

Error analysis

Compared with DWM results, errors of f_{1}, f_{2} are both less than 2.5% for $1<f_{2} / f_{1} \leq 2.8,5 \leq \varepsilon_{\mathrm{r}} \leq 70$.

Example for Dual-band Rectangular DRA Design

Given: $f_{1}=3.47 \mathrm{GHz}$ (WiMax)

$$
f_{2}=5.2 \mathrm{GHz}(\mathrm{WLAN}), \varepsilon_{\mathrm{r}}=10
$$

Using dual-mode formulas
$a=20.8 \mathrm{~mm}, b=10.5 \mathrm{~mm}$, and $d=18.5 \mathrm{~mm}$.

Configuration of the dualband DRA

$W=2.6 \mathrm{~mm}, L=10.6 \mathrm{~mm}, L \mathrm{~s}=7.2 \mathrm{~mm}, W_{\mathrm{f}}=1.94 \mathrm{~mm}$, $h=0.762 \mathrm{~mm}, \varepsilon_{\mathrm{rs}}=2.93$

Measured and simulated reflection coefficients

Measured bandwidths:

Lower band: 15% (3.25-3.78 GHz) covering WiMAX (3.4-3.7 GHz). Upper band: 8.3% (5.03-5.47 GHz) covering WLAN (5.15-5.35 GHZ).

COMPARISON OF DESIGN, SIMULATED, AND MEASURED RESONANCE FREQUENCIES OF TE $111{ }^{\mathrm{y}}$ AND TE 113^{y} MODES

Resonant Mode	Measured frequency (GHz)	Design frequency		Simulated HFSS frequency	
		$f_{1,2}$ (GHz)	Error $(\%)$	$f_{\text {HFSS }}$ (GHz)	Error $(\%)$
$\mathrm{TE}_{111}{ }^{\mathrm{y}}$	3.40	3.47	2.05	3.47	2.05
$\mathrm{TE}_{113}{ }^{\mathrm{y}}$	5.18	5.30	2.32	5.24	1.15

Measured and simulated radiation patterns

- $\mathrm{TE}_{111}{ }^{\mathrm{y}}$ mode: measured (3.40 GHz), simulated (3.47 GHz).
- Broadside radiation patterns are observed for both planes.
- Co-polarized fields > cross-polarized fields by more than 20 dB in the boresight direction.

Measured and simulated radiation patterns

- $\mathrm{TE}_{113}{ }^{\mathrm{y}}$ mode: measured (5.18 GHz), simulated (5.24 GHz).
- Broadside radiation patterns are observed for both planes.
- Co-polarized fields > cross-polarized fields by more than 20 dB in the boresight direction.

Measured antenna gain

- $\mathrm{TE}_{111}{ }^{\mathrm{y}}$ mode: Maximum gain of 4.02 dBi at 3.48 GHz .
- $\mathrm{TE}_{113}{ }^{\mathrm{y}}$ mode: Maximum gain of 7.52 dBi at 5.13 GHz .
- Electrically larger antenna has a higher antenna gain.

B. Example for Wideband DRA Design

Given: $f_{1}=1.98 \mathrm{GHz}(\mathrm{PCS})$

$$
f_{2}=2.48 \mathrm{GHz}(\mathrm{WLAN}), \varepsilon_{\mathrm{r}}=10
$$

Using formulas for dual-mode
rectangular DRA
$a=30.7 \mathrm{~mm}, b=24.7 \mathrm{~mm}$, and $d=47.7 \mathrm{~mm}$.

Configuration of the wideband DRA

$$
l=17 \mathrm{~mm}, W=1 \mathrm{~mm}
$$

Measured and simulated reflection coefficients

Measured bandwidths: $30.9 \%(1.83-2.50 \mathrm{GHz})$ PCS (1.85-1.99 GHz), UMTS (1.99-2.20 GHz) \& WLAN (2.4-2.48 GHz)

Measured and simulated radiation patterns

- Measured (2.16 GHz), simulated (2.11 GHz).
- Broadside radiation patterns are observed.
- Co-polarized fields > cross-polarized fields by more than 20 dB in the boresight direction.

Measured and simulated radiation patterns

- Measured (2.41 GHz), simulated (2.46 GHz).
- Broadside radiation patterns are observed.
- Co-polarized fields > cross-polarized fields by more than 20 dB in the boresight direction.

Measured antenna gain

- The maximum gain of 6.98 dBi at 2.47 GHz .
- $\mathrm{TE}_{113}{ }^{\mathrm{y}}$-mode gain $>\mathrm{TE}_{111}^{\mathrm{y}}$-mode gain.

Resonance frequency of the $\mathrm{HEM}_{\mathrm{mnr}}$ mode of the cylindrical DRA

$$
\begin{align*}
& k_{\rho i}^{2}+k_{z i}^{2}=\varepsilon_{r} k_{0 i}^{2} \tag{1}\\
& i=1,2 \text { for } f_{1}, f_{2}
\end{align*}
$$

$f_{1}: \mathrm{HEM}_{111}$ mode frequency
$f_{2}: \mathrm{HEM}_{113}$ mode frequency

- $k_{\rho i} \& k_{z i}$: dielectric wavenumbers along the $\rho \& z$ directions
- $k_{0 i}=2 \pi f_{i} / c$: wavenumber in air

For k_{ρ} :

$$
\begin{align*}
& =\frac{m^{2}\left(k_{\mu}^{2}+k_{\rho}{ }^{\prime 2}\right)\left(k_{\mu}^{2}+\varepsilon_{,} k_{\mu}^{\prime 2}\right)}{\left(k_{\rho} k_{\mu}^{\prime}\right)^{4} a^{2}} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
k_{\rho i}^{\prime}=\sqrt{\left(\varepsilon_{r}-1\right) k_{0 i}^{2}-k_{\rho i}^{2}} \tag{3}
\end{equation*}
$$

is the radial wavenumber outside the dielectric rod
$J_{m}(x)$: Bessel function of the first kind
$K_{m}(x)$: modified Bessel function of the second kind.

Resonance frequency of cylindrical DRA

For k_{z} : approximated by the TM_{01}-mode wavenumber

$\frac{h k_{z i}}{p_{i}}=\tan ^{-1}\left(\frac{\varepsilon_{r} \sqrt{\left(\varepsilon_{r}-1\right) k_{0 i}^{2}-k_{z i}^{2}}}{k_{z i}}\right)$
$\left(i=1,2\right.$ for $\left.f_{1}, f_{2}\right)$
where $p_{1}=1$ and $p_{2}=3$
correspond to the HEM_{111} and HEM_{113} modes, respectively.
R. K. Mongia and P. Bhartia, "Dielectric resonator antennas- a review and general design relations for resonant frequency bandwidth," International Journal of Microwave and Millimeter-Wave ComputerAided Engineering, vol. 4, no. 3, pp 230-247, 1994.

Design formula of ratio h / a for given f_{1}, f_{2}, and ε_{r}

$f_{1}: \mathrm{HEM}_{111}$ mode frequency (lower band) $f_{2}: \mathrm{HEM}_{113}$ mode frequency (upper band)

Using the covariance matrix adaptation evolutionary strategy again,

$$
\begin{gather*}
\frac{h}{a}=\frac{E_{S}}{\varepsilon_{r}}+\sum_{i=1}^{4} \frac{1}{\varepsilon_{r}^{4-i}}\left(\frac{A_{i}}{e^{\frac{B_{i} f_{2}}{f_{1}}}+C_{i}}+D_{i}\right) \tag{1}\\
{\left[\begin{array}{ccccc}
A_{1} & B_{1} & C_{1} & D_{1} & E_{s} \\
A_{2} & B_{2} & C_{2} & D_{2} & 0 \\
A_{3} & B_{3} & C_{3} & D_{3} & 0 \\
A_{4} & B_{4} & C_{4} & D_{4} & 0
\end{array}\right]=\left[\begin{array}{ccccc}
489.7 & 0.234 & -0.937 & -34800 & 116500 \\
680.3 & -625.2 & -4.402 & 3682.7 & 0 \\
36.15 & 1.511 & -4.713 & -160.2 & 0 \\
19.23 & 1.162 & 3.982 & 1.996 & 0
\end{array}\right]}
\end{gather*}
$$

Design formula of radius a

Radius a can be found by inserting h / a into (2) below:

$$
\begin{align*}
& a=\frac{\mathrm{c}}{2 \pi \sqrt{\varepsilon_{\mathrm{r}}} f_{1}}\left[\frac{E_{S}}{\varepsilon_{r}{ }^{4}}+\sum_{i=1}^{4} \frac{1}{\varepsilon_{r}^{4-i}}\left(\frac{A_{i}}{e^{\frac{B_{i} h}{a}}+C_{i}}+D_{i}\right)\right] \tag{2}\\
& {\left[\begin{array}{llll}
A_{1} & B_{1} & C_{1} & D_{1} \\
A_{1} & E_{5} \\
A_{2} & B_{2} & C_{2} & D_{2} \\
A_{3} & B_{3} & C_{3} & D_{3} \\
A_{4} & B_{4} & C_{4} & D_{4}
\end{array}\right]=\left[\begin{array}{ccccc}
1.109 & -1.751 & 0.00152 & 3107.8 & -10932 \\
-0.0571 & -0.005 & -0.9973 & -304.1 & 0 \\
0.152 & 0.0368 & -0.9764 & 17.814 & 0 \\
4.429 & 5.659 & 6.114 & 0.057 & 0
\end{array}\right]}
\end{align*}
$$

After a is found, h can be determined from h / a.
Maximum error of $a: 2.1 \%$ for $1 \leq h / a \leq 3.5,9 \leq \varepsilon_{\mathrm{r}} \leq 27$
Maximum error of $h: 3.0 \%$ for $1.28 \leq h / a \leq 1.85,9 \leq \varepsilon_{\mathrm{r}} \leq 27$

Example for dualband cylindrical DRA design

Given: $f_{1}=1.71 \mathrm{GHz}$ (DCS:1.71-1.88 GHz) $f_{2}=2.4 \mathrm{GHz}($ WLAN: $2.4-2.48 \mathrm{GHz})$, $\varepsilon_{\mathrm{r}}=9.4$

$$
a=17.9 \mathrm{~mm} \& h=42.5 \mathrm{~mm}
$$

Configuration of the dualband LP DRA

Top view

Side view

$$
\begin{aligned}
& a=18.7 \mathrm{~mm}, h=42.5 \mathrm{~mm}, \varepsilon_{r}=9.4, l=12.5 \mathrm{~mm}, w=1 \mathrm{~mm}, \\
& L \mathrm{~s}=20 \mathrm{~mm}, W \mathrm{~s}=1.5 \mathrm{~mm}, \text { and } D \mathrm{~s}=12.75 \mathrm{~mm} .
\end{aligned}
$$

- Radius a has been slightly increased to reduce the merging effect

Measured and Simulated Reflection coefficients

- Reasonable agreement
- Lower band impedance bandwidth: 15.5% (1.70-2.00 GHz)
- Upper band impedance bandwidth: 3.7\% (2.39-2.48 GHz)

Measured and simulated radiation patterns

(a)

(b)
HEM_{111} mode: measured (1.8 GHz), simulated (1.8 GHz) HEM_{113} mode: measured (2.42 GHz), simulated (2.45 GHz)

- Broadside radiation patterns are observed.
- Co-polarized fields > cross-polarized fields by more than 20 dB in the boresight direction.

Measured and simulated gain

- HEM_{111} mode: Maximum measured gain of $\sim 6 \mathrm{dBi}(1.75 \mathrm{GHz})$
- HEM_{113} mode: Maximum measured gain of $\sim 8 \mathrm{dBi}(2.43 \mathrm{GHz})$

Dualband CP DRA

Top view

Side view
$a=18.7 \mathrm{~mm}, h=42.5 \mathrm{~mm}, \varepsilon_{r}=9.4, l=12.5 \mathrm{~mm}, w=1 \mathrm{~mm}, L \mathrm{~s}=21 \mathrm{~mm}, W \mathrm{~s}=1.5 \mathrm{~mm}, D \mathrm{~s}=$ $12.75 \mathrm{~mm}, L_{1}=26.9 \mathrm{~mm}, L_{2}=26.5 \mathrm{~mm}, L_{3}=56.65 \mathrm{~mm}, W_{0}=4.66 \mathrm{~mm}, W_{1}=7.3 \mathrm{~mm}, W_{2}=$ 4.44 mm , and $W_{3}=0.46 \mathrm{~mm}$.

Measured and simulated reflection coefficients

Reasonable agreement
Lower band bandwidth:18.9\% (1.58-1.91 GHz).
Upper band bandwidth:7.8\% (2.33-2.52 GHz).

Measured and simulated axial ratios (ARs)

- Reasonable agreement
- Lower band AR bandwidth: 12.4% (1.67-1.89 GHz)
- Upper band AR bandwidth: 7.4\% (2.34-2.52GHz)

Measured and simulated radiation patterns

(a)

(b)
HEM_{111} mode: measured (1.8 GHz), simulated (1.8 GHz) HEM_{113} mode: measured (2.42 GHz), simulated (2.45 GHz)

- Broadside radiation patterns are observed.
\bullet LHCP fields $>$ RHCP fields by $\sim 20 \mathrm{~dB}$ in the boresight direction.

B. Example for wideband cylidnrical DRA design

Given: $f_{1}=2.90 \mathrm{GHz}, f_{2}=3.72 \mathrm{GHz}, \varepsilon_{\mathrm{r}}=9.4$

Wideband LP cylindrical DRA

Configuration

$a=10.3 \mathrm{~mm}, h=34.3 \mathrm{~mm}, \varepsilon_{r}=9.4$, $l=12 \mathrm{~mm}$, and $w=1 \mathrm{~mm}$.

Reflection coefficient

Good agreement
Measured impedance bandwidth: 23.5% (3-3.8 GHz)

Measured and simulated gain

- HEM_{111} mode: Maximum measured gain of $\sim 7 \mathrm{dBi}(3.29 \mathrm{GHz})$
- HEM_{113} mode: Maximum measured gain of $\sim 10 \mathrm{dBi}(3.83 \mathrm{GHz})$

Wideband CP cylindrical DRA

Top view

Side view

$$
\begin{aligned}
& a=10.3 \mathrm{~mm}, h=34.3 \mathrm{~mm}, \varepsilon_{r}=9.4, l=11.5 \mathrm{~mm}, w=1 \mathrm{~mm}, \\
& L_{1}=14.67 \mathrm{~mm}, W_{0}=1.94 \mathrm{~mm}, \text { and } W_{1}=3.21 \mathrm{~mm} .
\end{aligned}
$$

Wideband CP DRA

Reflection coefficient

Measured impedance bandwidth: 25.5% (3.04-3.93 GHz).

Axial ratio

Measured 3-dB AR bandwidth : 24.7% (3.05-3.91 GHz).

Advantage

System size and cost can be reduced by using dualfunction DRAs.

Additional functions

- Packaging cover
- Oscillator

Packaging Cover

Conventional

Proposal

Front view

Antenna Configuration

Dielectric resonator antenna
and packaging cover

Resonant frequency

$f_{0}=2.4 \mathrm{GHz}$

Parameters:

- Hollow DRA:
$L=30 \mathrm{~mm}, W=29 \mathrm{~mm}$,
$H=15 \mathrm{~mm}, \& \varepsilon_{\mathrm{r}}=12$
Side view

Top view

- Metallic Cavity:
$a=15 \mathrm{~mm}, b=21.6 \mathrm{~mm}, h=5 \mathrm{~mm}$
Top face : Duroid $\varepsilon_{\mathrm{r}}=2.94$ thickness 0.762 mm
Aperture: $0.2063 \lambda_{\text {e }}$

Design Procedure (Simulation):

Step 1

Use the DWM to design a solid rectangular DRA at $2.4-\mathrm{GHz}$ fundamental TE111 Mode.

Experimental Verification:

- Hard-clad foam $\left(\varepsilon_{\mathrm{r}} \approx 1\right)$ is used to form the container.
- ECCOSTOCK HiK Powder of $\varepsilon_{\mathrm{r}}=12$ is used as the dielectric material.

Return Loss and Input Impedance
 (Passive hollow RDRA with a metallic cavity)

-Good agreement.

- Bandwidth ~5.6\%.
- Measured resonance frequency: 2.42 GHz (error $<0.83 \%$)

Radiation Patterns

(Passive hollow DRA with a metallic cavity)

- Broadside $\mathrm{TE}_{111}{ }^{y}$ mode is observed.
- Co-polarized fields generally stronger than the crosspolarized fields by 20 dB in the boresight direction. ${ }_{108}$

Return Loss of the Active Integrated Antenna

- Integrated with Agilent AG302-86 low noise amplifier (LNA) (gain of 13.6 dB at 2.4 GHz)
- LNA prematched to 50Ω at the input.
- A small hole is drilled on the ground plane to supply the DC bias to the LNA.

Amplified Radiation Pattern

- Compared to the passive DRA, the active DRA has a gain of $7-12 \mathrm{~dB}$ across the observation angle from -90° to 90°.
- The gain is less than the specification due to unavoidable impedance variations and imperfections in the measurement.

Methodology

- The DRA is used as the oscillator load, named as DRAO.
- The reflection amplifier method is used to design the antenna oscillator.

DRAO Schematic Diagram

- Oscillate condition: $X_{L}+X_{\text {in }}=0 \& R_{L}<\left|R_{\text {in }}\right|$
- DRA first replaced by a 50Ω load at 1.85 GHz .

Antenna Configuration:

Dielectric resonator antenna and

Side view

Resonance frequency $f_{\mathrm{o}}=1.85 \mathrm{GHz}$ at $T E_{111}{ }^{\nu}$

> Parameters:
> DRA
> $L=52.2 \mathrm{~mm}$,
> $W=42.4 \mathrm{~mm}$,
> $H=26.1 \mathrm{~mm}$,
> $\varepsilon_{\mathrm{r}}=6$.

Aperture

$\mathrm{L}_{\mathrm{a}}=0.3561 \lambda_{\mathrm{e}}, \mathrm{W}_{\mathrm{a}}=2 \mathrm{~mm}$
$\mathrm{L}_{\mathrm{s}}=9.5 \mathrm{~mm}, \mathrm{~L}_{\mathrm{m}}=40 \mathrm{~mm}$.

Duroid substrate

Ers $=2.94, d=0.762 \mathrm{~mm}$

Return Loss and Input Impedance

- Good agreement.
- Bandwidth ~22.14\%.
- Resonance frequency: Measured 1.86 GHz Simulated 1.83 GHz (1.5% error).

Spectrum of the Free-running DRAO

- Transmitting power $P_{t}=16.4 \mathrm{dBm}$
- DC-RF efficiency: $\sim 13 \%$ ($2-25 \%$ in the literature).
- Phase noise: $103 \mathrm{dBc} / \mathrm{Hz}$ at 5 MHz offset
- Second harmonic $<$ fundamental by 22 dB

Radiation Pattern

- Broadside $\mathrm{TE}_{111}{ }^{y}$ is observed.
- Co-polarized fields are generally 20 dB stronger than the cross-polarized fields in the boresight direction.

DRA can be of any shape. Can it be made like a swan?

Yes!

DRA is simple made of dielectric. Can glass be used for the dielectric?

Yes!

It leads to probably the most beautiful antenna in the world

Glass-Swan DRA

Distinguished Lecture
Transparent antennas: From 2D to 3D

Conclusion

- The DRA can be easily excited with various excitation schemes.
- Frequency tuning of the DRA can be achieved by using a loading-disk or parasitic slot.
- The dualband and wideband DRAs can be easily designed using higher-order modes.
- Compact omnidirectional CP DRAs have been presented
- Dualfuncton DRAs for packaging and oscillator designs have been demonstrated.

Thank you!

Q \& \mathbf{A}

