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• The DRA is an antenna that makes use of a radiating mode 
of a dielectric resonator (DR).

• It is a 3-dimensional device of any shape,
e.g., hemispherical, cylindrical, rectangular,
triangular, etc.

• Resonance frequency determined by the its dimensions and 
dielectric constant r.

What is Dielectric Resonator Antenna (DRA) ?
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Some DRs :
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Advantages of the DRA

• Low cost
• Low loss (no conductor loss)
• Small size and light weight
• Reasonable bandwidth (~10% for r ~10)
• Easy of excitation
• High radiation efficiency ( generally > 95%)
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Excitation schemes

Ground plane

Dielectric substrate

DRA
Microstrip
feed line

(i) Microstrip line feed
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Ground plane

Microstrip
feed line

Feed
Substrate

DRA

Slot

(ii) Aperture-couple feed

Excitation schemes
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Ground plane

Coaxial probe

DRA

(iii) Coaxial feed

Excitation schemes
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Bottom viewTop view

Coaxial feed
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Bottom view Top view

Aperture-coupled feed
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Slot-fed DRA array using corporate 
microstrip feed network

Corporate feedline for DRA array
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Conformal-Strip Method

Ground 
plane

Hemispherical
DRA

Conducting 
conformal strip

l
a

W



Rectangular Dielectric 
Resonator Antennas

Rectangular Dielectric 
Resonator Antennas
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Proposed Antenna Geometry
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Resonant frequency of TEmnl(y) mode

Analytical Solution

• Dielectric Waveguide Model (DWM)
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Numerical Solution

Advantages
- Very simple
- High modeling capability for general EM structures
- No spurious modes nor large matrix manipulation
- Provide a very wideband frequency response

• Finite-Difference Time-Domain (FDTD) method

Disadvantages
- Time consuming, powerful computer required
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Baseband Gaussian pulse
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Uniform Cartesian grids

T = 0.083ns, t0 = 3T

10-cell-thick PML with polynomial spatial scaling 
(m = 4 and κmax = 1)

total grid size : 80∆x × 110∆y × 112∆z

total time steps : 10000

∆x = 0.715 mm, ∆y = 0.508 mm, ∆z = 0.5 mm

Parameters
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• Reasonable agreement.
• Wide Bandwidth of ~ 43%.
• Dual resonant TE111

y and TE113
y modes are excited.
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y
111TE

y
113TE

Resonant 
Modes

Measured 
resonant 

frequencies 

Calculated resonant 
frequencies (FDTD)

Predicted resonant 
frequencies (DWM)

fmea (GHz) fFDTD
(GHz)

error 
(%)

fDWM
(GHz)

error 
(%)

3.81 3.90 2.3 3.95 3.6

N/A N/A N/A 4.26 N/A

4.57 4.60 0.7 4.7 1.7

Comparison between Theory and Measurement

y
112TE

• Reasonable agreement.
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Field Distribution --- TE111
y 
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Field Distribution --- TE112
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Field Distribution --- TE113
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E (xz) - plane H (yz) - plane(+x)(-x) (-y) (+y)
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f = 3.5 GHz

f = 4.3 GHz

Radiation Patterns

• Broadside radiation patterns are observed.
• Measured E-plane crosspolarized fields mainly caused by finite 
ground plane diffraction.



III. Circularly Polarized Design 
using a Parasitic Strip

III. Circularly Polarized Design 
using a Parasitic Strip
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Proposed Antenna Geometry
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Input Impedance/S11

• Reasonable agreement.
• Bandwidth ~ 14%.
• Two nearly-degenerate TE111(y) modes are excited.
 CP operation
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Axial Ratio in the boresight direction

3-dB AR bandwidth is ~ 2.7%, which is a typical value for 
a singly-fed CP DRA.
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The H field of the DRA without and with parasitic 
strip (Top view)

Without parasitic strip - LP field With parasitic strip - CP field

3.4 GHz 3.4 GHz

Feeding strip Feeding strip

Parasitic 
strip

29
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Radiation Patterns (f = 3.4GHz, )

LHCP

RHCP
xz plane yz plane
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• A broadside radiation mode is observed.
• For each radiation plane, the LHCP field is more than 20dB

stronger than the RHCP field.
• The maximum gain is 5.7 dBic (not shown here).
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Effects of feeding strip length l1

• Input impedance changes substantially with l1. 
• AR is almost unchanged for different l1. 
• l1 can be adjusted to match the impedance without changing AR. 
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II. Frequency Tuning TechniqueII. Frequency Tuning Technique



The DRA for a paticular frequency may not be 
available from the comericial market.

Fabrication tolerances cause errors between 
measured and calculated resonant frequencies.

Frequency tuning methods: 
(i)   loading-disk; and
(ii)  parasitic slot.

Backgruond 



Frequency Tuning Technique
- using a loading disk
Frequency Tuning Technique
- using a loading disk



Side view Top view 

The slot-coupled DRA with a conducting loading 
cap

d

z

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Hemispherical DRA: radius a = 12.5 mm, dielectric constant εr = 9.5.
Coupling slot : length Ls , width Ws
Open-circuit stub: length Lt
Grounded dielectric slab: εrs = 2.33, height d = 1.57 mm
Microstrip feedline: width Wf = 4.7 mm



Calculated and measured return losses
(Ls = 12 mm and Ws = 1 mm)
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Resonance frequency: 
 3.52 GHz without any conducting cap (α = 00), with Lt = 4.42 mm
 3.25 GHz (α = 26.38o and Lt = 4.42 mm)
 3.68 GHz (α = 52.8o and Lt = 13.6 mm)



Calculated and measured radiation patterns
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3.58 GHz (α = 52.8o and Lt = 13.6 mm)

 Reasonable agreement
between theory and
experiment.

 The effect of loading
cap on field pattern is not
significant.

3.25 GHz (α = 26.38o and Lt = 4.42 mm)



Calculated α and Lt for having a good return loss 
(minimum |S11| < -20dB) 
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The resonant frequency can be tuned by varying α and Lt
 α decreases from 26.38o to 0o (3.25 < fr < 3.5 GHz )
 α increases from 0o to 52.8o (3.5 < fr < 3.78 GHz)



Impedance bandwidth

 The bandwidth decreases after a loading cap is added.
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Frequency Tuning Technique
- using a parasitic slot

Frequency Tuning Technique
- using a parasitic slot



(a) Side view 

(b) Top view 

The annular-slot-excited cavity-backed DRA
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IV.  Omnidirectional Circularly
Polarized DRA

IV.  Omnidirectional Circularly
Polarized DRA
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CP DRAs concentrated on broadside-mode designs only.

 Provide larger coverage.

Advantages of omnidirectional CP antenna
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Slotted omnidirectional CP DRA

Design I:



45

Antenna configurations

x
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Perspective view Front view

 Dielectric cube with oblique slots (polarizer) fabricated on
its four sidewalls.

 Centrally fed by a coaxial probe extended from a SMA
connector, whose flange used as the small ground plane.



Wave polarizer

LP omnidirectional DRA Dielectric block with the wave 
polarizer

Proposed compact omnidirectional CP DRA

x

y
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Dielectric 
slabs

D

E

+

Antenna principle
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Prototype for 2.4 GHz WLAN design

Top face and sidewalls Bottom face

Design parameters
r = 15, a = b = 39.4 mm, h = 33.4 mm, w = 9.4 mm,
d =14.4 mm, r1 = 0.63 mm, l = 12.4 mm, g = 12.7 mm

Photographs of the prototype



48

Simulated and measured results

Reflection coefficient

Impedance bandwidth: AR bandwidth:
Simulated: 20.3% (2.34-2.87 GHz) Simulated: 8.2% (2.34-2.54 GHz)
Measured: 24.4% (2.30-2.94 GHz) Measured: 7.3% (2.39-2.57 GHz)

Axial ratio
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 Very good omnidirectional characteristic
 In the horizontal plane, LHCP fields > RHCP fields by 

~20 dB .

Simulated and measured radiation patterns
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-40 -30 -20 -10 0

30

150

60

120

9090

120

60

150

30

180

o

o o

o

o o

o o

o o
o

dB

xz-plane

0o

RHCP

(+x)(-x)

-40 -30 -20 -10 0

30

210

60

240

90270

120

300

150

330

180

o

o o

o

o o

o o

o o
o

dB

xy-plane

0o

RHCP



50

Simulated and measured antenna gain
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Wideband omnidirectional CP antenna 
with parasitic metallic strips

Design II:
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Perspective view Front view

x
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z
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 Four parasitic metallic strips are embedded in the
lateral slots to enhance the AR bandwidth.

 The hollow circular cylinder is introduced to enhance
the impedance bandwidth.

Antenna configurations
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Photographs of the prototype

Top face and sidewalls Bottom face

Design parameters
r = 15, a = b = 30 mm, h = 25 mm, r = 3 mm, w = 7 mm, d =10.5 mm
ls = 30.5 mm, ws = 1 mm, x0 = 6.4 mm, r1 = 0.63 mm, l = 19 mm.

Prototype for 3.4 GHz WiMAX design
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Overlapping bandwidth: 22.0%; bandwidth widened by ~3 times.

Simulated and measured reflection 
coefficient and axial ratio

Axial Ratio (dB)
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Impedance bandwidth: 
Simulated: 22.3% (3.11-3.89 GHz) 
Measured: 24.5% (3.08-3.94 GHz) 

AR bandwidth:
Simulated: 24.8% (3.11-3.99 GHz) 
Measured: 25.4% (3.16-4.08 GHz)
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 Measured gain: wider bandwidth.
 Measured antenna efficiency: 84-98% (3.1-3.9 GHz).

Antenna gain

Simulated and measured results

Radiation efficiency
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3.4 GHz 3.8GHz

 LHCP fields > RHCP fields by more than 15 dB in horizontal plane.
 Stable radiation patterns across the entire passband (3.1 – 3.9 GHz).
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V. Dualband & Wideband DRAsV. Dualband & Wideband DRAs



(i) Rectangular DRA(i) Rectangular DRA
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 Dualband and wideband antennas are extensively used
(e.g., WLAN)

 Multi-element DRA [1]

- requiring more DR elements and space

 Hybrid slot-DRA [2]

- coupling slot used as the feed and antenna

- inflexible in matching the impedance 
[1] Petosa, N. Simons, R. Siushansian, A. Ittipiboon and C. Michel, “Design and analysis of 

multisegmentdielectric resonator antennas,” IEEE Trans. AP, vol.48, pp.738-742, 2000. 
[2] Buerkle, K. Sarabandi, and H. Mosallaei, “Compact slot and dielectric resonator antenna with 

dual-resonance, broadband characteristics,” IEEE Trans. AP , vol. 53, pp.1020-1027, 1983.

Background
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• Wideband DRA [1]

• Dualband DRA [2]

• Trial-and-error approach is normally used

• Systematic design approach is desirable
[1] B. Li and K. W. Leung, “Strip-fed rectangular dielectric resonator antennas with/without a 

parasitic patch,” IEEE Trans. Antennas Propagat., vol.53, pp.2200-2207, Jul.2005. 
[2] T. H. Chang and J. F. Kiang, “Dual-band split dielectric resonator antenna,” IEEE Trans.

Antennas Propagat., vol.55, no.11, pp.3155-3162, Nov.2007. 

Use of higher-order DRA 
mode
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Design Formulas for Dual-Mode rectangular DRA

yTE111
yTE112

yTE113

 The E-field should vanish on the PEC and the TE112 mode 
cannot be excited properly.

 The TE111 mode and TE113 mode are used in the dual-
mode design. 
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Formula Derivation

The wavenumbers kx1, x2 and
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From the DWM model, the frequencies f1, f2 are given by:
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Limit of frequency ratio f2/f1

From

3k1 > k2 or  3f1 > f2

We have

giving
f2/f1 < 3

which is the theoretical limit that is not known before.
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Compared with DWM results, errors of f1, f2 are both 
less than 2.5% for 1 < f2/f1≤2.8 ,  5 ≤εr ≤70.

f1 kept constant at 2.4 GHz.

Error analysis
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A.  Example for Dual-band Rectangular DRA Design

a = 20.8 mm, b = 10.5 mm, and d = 18.5 mm. 

Given: f1 = 3.47 GHz (WiMax)
f2 = 5.2 GHz (WLAN), εr=10

Using dual-mode
formulas
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Configuration of the dualband DRA
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W = 2.6 mm, L =10.6 mm, Ls=7.2 mm, Wf=1.94 mm, 
h=0.762mm, εrs= 2.93
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Measured and simulated reflection coefficients

Measured bandwidths: 
Lower band: 15% (3.25-3.78 GHz) covering WiMAX (3.4-3.7 GHz).
Upper band: 8.3% (5.03-5.47 GHz) covering WLAN (5.15-5.35 GHZ).
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Reflection coefficient |S  | (dB)11
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COMPARISON OF DESIGN, SIMULATED, AND MEASURED
RESONANCE FREQUENCIES OF TE111

y AND TE113
y MODES 

Resonant
Mode

Measured 
frequency

(GHz)

Design 
frequency

Simulated HFSS 
frequency

f1,2
(GHz)

Error 
(%)

fHFSS
(GHz)

Error
(%)

TE111
y 3.40 3.47 2.05 3.47 2.05

TE113
y 5.18 5.30 2.32 5.24 1.15
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 TE111
y mode: measured (3.40 GHz), simulated (3.47 GHz).

 Broadside radiation patterns are observed for both planes.
 Co-polarized fields > cross-polarized fields by more than 20 dB in

the boresight direction.

Measured and simulated radiation patterns 
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Measured and simulated radiation patterns

 TE113
y mode: measured (5.18 GHz), simulated (5.24 GHz).

 Broadside radiation patterns are observed for both planes.
 Co-polarized fields > cross-polarized fields by more than 20 dB in

the boresight direction.
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 TE111
y mode:  Maximum gain of 4.02 dBi at 3.48 GHz.

 TE113
y mode: Maximum gain of 7.52 dBi at 5.13 GHz.

 Electrically larger antenna has a higher antenna gain.

Measured antenna gain

3 3 .5 4 4 .5 5 5 .5 6
-5

0

5

10
G ain  (dBi)

Frequen cy (G Hz)
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B.  Example for Wideband DRA Design

a = 30.7 mm, b = 24.7 mm, and d = 47.7 mm. 

Given: f1 = 1.98 GHz (PCS)
f2 = 2.48 GHz (WLAN), εr=10

Using formulas for 
dual-mode
rectangular DRA
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Configuration of the wideband DRA

b

 Conducting 
feeding strip

 Coaxial 
aperture

a

d
W

l

Ground plane

Rectangular 
DRA  r

x

y

z

l = 17 mm, W = 1 mm
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Measured and simulated reflection coefficients

Measured bandwidths : 30.9% (1.83-2.50 GHz)
PCS (1.85-1.99 GHz), UMTS (1.99-2.20 GHz) 
& WLAN (2.4-2.48 GHz)
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Reflection coefficient |S  | (dB)11
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Measured and simulated radiation patterns

 Measured (2.16 GHz), simulated (2.11 GHz).
 Broadside radiation patterns are observed.
 Co-polarized fields > cross-polarized fields 
by more than 20 dB in the boresight direction.
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Measured and simulated radiation patterns

 Measured (2.41 GHz), simulated (2.46 GHz).
 Broadside radiation patterns are observed.
 Co-polarized fields > cross-polarized fields by more 
than 20 dB in the boresight direction.
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Measured antenna gain

 The maximum gain of 6.98 dBi at 2.47GHz.
 TE113

y -mode gain > TE111
y -mode gain. 
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0
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8

Frequency (GHz)

Gain (dBi)



(ii) Cylindrical DRA(ii) Cylindrical DRA
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2
0

22
irzii kkk  

Ground plane
z

a
Cylindrical 
DRA 

h



r

 kρi & kzi :dielectric wavenumbers along the  & z directions

 k0i = 2fi/c : wavenumber in air

(1)

Resonance frequency of the HEMmnr mode of the cylindrical DRA

i = 1, 2 for f1, f2

f1 : HEM111 mode frequency
f2 : HEM113 mode frequency
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Infinite 
dielectric rod

Resonance frequency of the HEMmnr mode of the cylindrical DRA

For k:

22
0)1(' iiri kkk   

where

is the radial wavenumber outside the 
dielectric rod

Jm(x) : Bessel function of the first kind 
Km(x): modified Bessel function of the second kind.

(2)

(3)

D. Kajfez and P. Guillon, “Dielectric resonators,”  Norwood, MA, Artech House, Inc., 1986.
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h

z



 r

Infinite dielectric 
slab 












 
 

zi

ziirr

i

zi

k
kk

p
hk 22

01 )1(
tan



For kz: approximated by the 
TM01-mode wavenumber 

Resonance frequency of cylindrical DRA

(i = 1, 2 for f1, f2) 

where p1 = 1 and p2 = 3 
correspond to the HEM111 and 
HEM113 modes, respectively.

(4)

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas- a review and general design relations for 
resonant frequency bandwidth,” International Journal of Microwave and Millimeter-Wave Computer-
Aided Engineering, vol. 4, no. 3, pp 230-247, 1994.
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

0996.1982.3162.123.19
02.160713.4511.115.36
07.3682402.42.6253.680

11650034800937.0234.07.489

(1)

f1 : HEM111 mode frequency (lower band)
f2 : HEM113 mode frequency (upper band)

Ground plane
z

a
Cylindrical 
DRA 

h



r

Design formula of ratio h/a for given f1, f2, and r

Using the covariance matrix adaptation
evolutionary strategy again,
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01.3049973.0005.00571.0

109328.310700152.0751.1109.1

=

(2)

Design formula of radius a

Radius a can be found by inserting h/a into (2) below:

After a is found, h can be determined from h/a.

Maximum error of a: 2.1% for 1  h/a  3.5,  9  r  27
Maximum error of h: 3.0% for 1.28  h/a  1.85,  9  r  27
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A. Example for dualband cylindrical DRA design

a = 17.9 mm & h = 42.5 mm

Given: f1 = 1.71 GHz (DCS:1.71- 1.88 GHz )
f2 = 2.4 GHz (WLAN:2.4 - 2.48 GHz ), 
εr=9.4

Using formulas 
(1) & (2)
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Matching slotExcitation 
strip Via

x

y

Cylindrical 
DRA  r

a

Aperture
Feedline

Ground plane

Wf

Ws
DsLs

 

a

h



x

z Cylindrical 
DRA  r

Matching slot
Via

Feedline

d

Ground planeAperture 
for via

Excitation strip
w 

l 

Configuration of the dualband LP DRA

Top view Side view

a = 18.7 mm, h = 42.5 mm, r = 9.4, l = 12.5 mm, w = 1 mm, 
Ls = 20 mm, Ws = 1.5 mm, and Ds = 12.75 mm.

 Radius a has been slightly increased to reduce the merging effect
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1.6 1.8 2 2.2 2.4 2.6
-30

-20

-10

0

Frequency (GHz)

HFSS Simulation      
Measurement  

Reflection Coefficient |S11| (dB)

Measured and Simulated Reflection coefficients

Reasonable agreement 
Lower band impedance bandwidth: 15.5% (1.70-2.00 GHz)
Upper band impedance bandwidth: 3.7% (2.39-2.48 GHz)
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Measured and simulated radiation patterns

HEM111 mode: measured (1.8 GHz), simulated (1.8 GHz)
HEM113 mode: measured (2.42 GHz), simulated (2.45 GHz)

(a) (b)

Broadside radiation patterns are observed.
Co-polarized fields > cross-polarized fields by more than 20 dB in the 
boresight direction.
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1.6 1.65 1.7 1.75 1.8 1.85 1.9
0
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Frequency (GHz)

Lower band gain (dBi)

HFSS Simulation      
Measurement  

Frequency (GHz)

Upper band gain (dBi)

2.3 2.35 2.4 2.45 2.5 2.550

2
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6

8

1010
8

6
4
2

0
2.3 2.35 2.52.4 2.45 2.55

Measured and simulated gain

 HEM111 mode: Maximum measured gain of ~6 dBi (1.75 GHz)
 HEM113 mode: Maximum measured gain of ~ 8 dBi (2.43 GHz)
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L2

L3

L1
W2

W0

WS

W3 W1

LS

DS

Input port

Via

Cylindrical 
DRA  r

x 

ya

quadrature
coupler

Dualband

grounding
via

To

plane
Ground

port
Isolation

slot
Matching

strip
Excitation

via
To grounding

Dualband CP DRA

a = 18.7 mm, h = 42.5 mm, r = 9.4, l = 12.5 mm, w = 1 mm, Ls = 21 mm, Ws = 1.5 mm, Ds = 
12.75 mm, L1 = 26.9 mm, L2 =26.5 mm, L3 = 56.65 mm, W0 = 4.66 mm, W1 = 7.3 mm, W2 = 
4.44 mm, and W3 = 0.46 mm.

 

a

h



x

z Cylindrical 
DRA  r

Matching slot
Via

Feedline

d

Ground planeAperture 
for via

Excitation strip
w 

l 

Top view Side view



 

1.6 1.8 2 2.2 2.4 2.6
-40
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-10

0
Reflection Coefficient |S11| (dB)

Frequency (GHz)

HFSS Simulation      
Measurement  

Reasonable agreement
Lower band bandwidth:18.9% (1.58-1.91 GHz).
Upper band bandwidth:7.8% (2.33-2.52 GHz).

Measured and simulated reflection coefficients
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Frequency (GHz)
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Upper band AR (dB)

Frequency (GHz)
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0
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88

6

4

2

0
2.3 2.4 2.5

Measured and simulated axial ratios (ARs)

Reasonable agreement 
Lower band AR bandwidth: 12.4% (1.67-1.89 GHz) 
Upper band AR bandwidth: 7.4% (2.34-2.52GHz)
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Measured and simulated radiation patterns

(a) (b)

HEM111 mode: measured (1.8 GHz), simulated (1.8 GHz)
HEM113 mode: measured (2.42 GHz), simulated (2.45 GHz)

Broadside radiation patterns are observed.
LHCP fields > RHCP fields by ~20 dB in the boresight direction.
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B. Example for wideband cylidnrical DRA design

a = 10.3 mm & h = 34.3 mm

Given: f1 = 2.90 GHz, f2 = 3.72 GHz, εr= 9.4

Using formula 
(5) & (6)
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Cylindrical 
DRA  r

Conducting 
feeding strip

Coaxial 
aperture

l

w h

a

Ground plane

z

x
y
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Reflection Coefficient |S11| (dB)

Frequency (GHz)

HFSS Simulation      
Measurement  

Configuration Reflection coefficient

a = 10.3 mm, h = 34.3 mm, r = 9.4, 
l = 12 mm, and w = 1 mm.

Good agreement
Measured impedance bandwidth:
23.5% (3-3.8 GHz) 

Wideband LP cylindrical DRA
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8
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Frequency (GHz)

Antenna Gain (dBi)

HFSS Simulation      
Measurement  

Measured and simulated gain

 HEM111 mode: Maximum measured gain of ~7 dBi (3.29 GHz)
 HEM113 mode: Maximum measured gain of ~10 dBi (3.83 GHz)
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L1

L1
W0

W0

W1

Input port

Excitation
strip

Isolation
port

Ground
plane

via

Excitation strip
Cylindrical 
DRA  r

Wideband 
quadrature 
coupler

 via

x 

ya

a

h



x

z Cylindrical 
DRA  r

Via
d

Ground planeAperture 
for via

Excitation strip
w 

l 

Wideband quadrature coupler

a = 10.3 mm, h = 34.3 mm, r = 9.4, l = 11.5 mm, w = 1 mm, 
L1 = 14.67 mm, W0 = 1.94 mm, and W1 = 3.21 mm.

Wideband CP cylindrical DRA

Top view Side view



99

 

3 3.2 3.4 3.6 3.8 4

-30

-20

-10

0

Frequency (GHz)

Reflection Coefficient |S11| (dB)

HFSS Simulation      
Measurement  

 

3 3.2 3.4 3.6 3.8 4
0

2

4

6

8

Frequency (GHz)

Axial ratio (dB)

HFSS Simulation      
Measurement  

Measured 3-dB AR bandwidth :
24.7% (3.05-3.91 GHz).

Measured impedance bandwidth:
25.5% (3.04-3.93 GHz).

Wideband CP DRA

Reflection coefficient Axial ratio



VI. Dualfunction DRAsVI. Dualfunction DRAs
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Advantage
System size and cost can be reduced by
using dualfunction DRAs.

Additional functions
- Packaging cover
- Oscillator
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Packaging Cover
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Conventional

Aperture Metallic supports
for grounding 

Dielectric resonator 
antenna/oscillator  
load and packaging 
cover

Metal ground

Power supply

z

y

Front view

h
H

Microstrip
feedline

d

Transistor (other 
RF components 
not shown)

Proposal
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Antenna Configuration

Aperture

Feedline and the
RF/MIC circuits

Metal ground

Coaxial line

Dielectric resonator antenna
     and packaging cover Metallic supports 

for grounding

H

hy

z

Side view

Coaxial

x

y
Microstrip 
 feedline

Aperture

L

W

a

b

Top view

Resonant frequency
f0 = 2.4GHz

Parameters:
• Hollow DRA:

L=30mm, W=29mm, 
H=15mm, & r =12

• Metallic Cavity:
a = 15mm, b = 21.6mm, h = 5mm
Top face : Duroid r =2.94

thickness 0.762mm
Aperture: 0.2063 e
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Design Procedure (Simulation):

Step 2
Remove the lower center 
portion concentrically to 
form a notched DRA. 
As a result, the resonant  
frequency >2.4GHz

Step 3
Cover the two sides with the
same material. Move the 
frequency back to 2.4GHz 
by increasing the thickness.
(thickness ↑ f0 ↓ )

Step 1
Use the DWM to design 
a solid rectangular DRA 
at 2.4-GHz fundamental 
TE111 Mode.

x

z
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Experimental Verification:

- Hard-clad foam (r ≈1) is used to form the    
container. 

- ECCOSTOCK HiK Powder of r =12 is used as 
the dielectric material.
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Return Loss and Input Impedance
(Passive hollow RDRA with a metallic cavity)

•Good agreement.
•Bandwidth ~ 5.6%.
• Measured resonance frequency: 2.42GHz (error < 0.83%) 
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Radiation Patterns
(Passive hollow DRA with a metallic cavity)

• Broadside TE111
y mode is observed.

• Co-polarized fields  generally stronger than the cross-
polarized fields by 20dB in the boresight direction.



109

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
Frequency (GHz)

-40

-30

-20

-10

0

R
et

ur
n 

Lo
ss

 (d
B

)

A A

DRA DRA

Return 
Loss

Return 
Loss

Receiver Transmitter

DRA (passive)

DRA (active, receiver)

DRA (active, transmitter)

Return Loss of the Active Integrated Antenna

• Integrated with Agilent AG302-86 low noise amplifier (LNA)
(gain of 13.6dB at 2.4GHz) 

• LNA prematched to 50 at the input.
• A small hole is drilled on the ground plane to supply the DC bias to the LNA.
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Amplified Radiation Pattern

• Compared to the passive DRA, the active DRA has a gain of
7 - 12dB across the observation angle from -90o to  90o.

• The gain is less than the specification due to unavoidable 
impedance variations and imperfections in the measurement. 



Dielectric Resonator Antenna 
Oscillator (DRAO)

Dielectric Resonator Antenna 
Oscillator (DRAO)
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• The DRA is used  as the oscillator load, 
named as DRAO.

Methodology

• The reflection amplifier method is used to 
design the antenna oscillator.
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DRAjX Zin=Rin+Xin

Lm

Transistor

C

ZL=RL+XL

DRAO Schematic Diagram

- Oscillate condition: XL+Xin=0 & RL<|Rin|
- DRA first replaced by a 50 load at 1.85GHz.
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Parameters:
DRA
L=52.2mm, 
W=42.4mm, 
H=26.1mm, 
r = 6.

Aperture
La = 0.3561e, Wa = 2mm
Ls = 9.5 mm, Lm = 40 mm.

Duroid substrate
rs=2.94, d=0.762mm

Antenna Configuration:
Dielectric resonator    
antenna and 
oscillating load

Microstrip
feedline Aperture

Ground
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H

z

x

Substrate

Side view

d

Transistor (other 
RF components 
not shown)
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Return Loss and Input Impedance

• Good agreement.
• Bandwidth ~ 22.14%.
• Resonance frequency: Measured 1.86GHz

Simulated 1.83GHz (1.5% error).
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Spectrum of the Free-running DRAO

• Transmitting power Pt = 16.4dBm
• DC-RF efficiency: ~ 13% (2-25% in the literature).
• Phase noise: 103dBc/Hz at 5MHz offset
• Second harmonic < fundamental by 22dB
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Radiation Pattern

• Broadside TE111
y is observed.

• Co-polarized fields are generally 20dB stronger 
than the cross-polarized fields in the boresight direction.

Solid DRAO (measur.)
Passive Solid DRA (measur.)

HFSS Simulation
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DRA can be of any shape. Can it be made like a swan?

Yes!

DRA is simple made of dielectric. Can glass be used for 
the dielectric?

It leads to probably the most beautiful antenna in 
the world …….

Yes!



Glass-Swan DRA

Distinguished Lecture
Transparent antennas: From 2D to 3D
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• The DRA can be easily excited with various excitation schemes.

• Frequency tuning of the DRA can be achieved by using
a loading-disk or parasitic slot.

• The dualband and wideband DRAs can be easily designed using
higher-order modes.

• Compact omnidirectional CP DRAs have been presented

• Dualfuncton DRAs for packaging and oscillator designs have
been demonstrated.

Conclusion
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Q & A




