

Prerequisites

- Maxwell's equations, Helmholtz equation
- Integral equations, surface integral equations
- Iterative solvers
- Fast multipole method(s) (FMM)
- Multi-level fast multipole algorithm (MLFMA)
- Parallel MLFMA
- Hierarchical Parallelization

EEEAP

Maxwell's Equations

$$
\begin{aligned}
\nabla \times \bar{E}(\bar{r}, t) & =-\frac{\partial}{\partial t} \bar{B}(\bar{r}, t) \\
\nabla \times \bar{H}(\bar{r}, t) & =\frac{\partial}{\partial t} \bar{D}(\bar{r}, t)+\bar{J}(\bar{r}, t) \\
\nabla \cdot \bar{B}(\bar{r}, t) & =0 \\
\nabla \cdot \bar{D}(\bar{r}, t) & =\rho(\bar{r}, t)
\end{aligned}
$$

What is the Main Source of Efficiency?

\boldsymbol{N} Unknowns	$\boldsymbol{O}\left(\boldsymbol{N}^{3}\right)$ Gaussian Elimination	$\boldsymbol{O}\left(\boldsymbol{N}^{2}\right)$ (tereative MOM (MVM)	$\boldsymbol{O}\left(\boldsymbol{N}^{3 / 2}\right)$ Single-Level FMM	$\boldsymbol{O}(\boldsymbol{N} \log \boldsymbol{N})$ Multi-Level FMM
1000	1 s	2 s	4 s	8 s
10^{6}	32 years	23 days	35 h	7 h
10^{7}	32 K years	6.3 years	46 days	89 h
10^{8}	32 M years	630 years	4 years	46 days
10^{9}	32 G years	63 K years	127 years	1.5 years $(555$ days)

What is the Main Source of Efficiency?

Answer: Reduced complexity of a fast algorithm is the main source of efficiency, NOT parallelization.

Nevertheless, parallelization is useful for reducing the CPU time and essential for memory usage.

Parallelization is necessary, but not sufficient

Dilemma: Faster algorithms with lower computational complexity require more complicated programming (ironic?), and hence they require more complicated programming

How Large are Large Matrix Equations?
Each element of the matrix is a complex number with real and imaginary parts

7.654321E+02

+ j 1.234567E-03

If we could fit each element of the matrix in a square of 1 in by 1 in...

How Large are Large Matrix Equations?
Each element of the matrix is a complex number with real and imaginary parts

$$
1 \text { in } \xlongequal[\begin{array}{l}
7.654321 \mathrm{E}-02 \\
+\mathrm{j} 1.23456 \mathrm{~F}-03
\end{array}]{\stackrel{1}{\mathrm{H}^{2}}}
$$

If we could fit each element of the matrix in a square of 1 in by 1 in...
mwvecemb.bikent.edutr \longrightarrow Computational Electromagnetics Research Center —@BiLCEM ——

Iterative Solutions

require matrix-vector multiplications in the form of $\bar{Z} \cdot \boldsymbol{x}$

Matrix-vector multiplication is provided by MLFMA in $O(N \log N)$ time.

Only near-field interactions are stored:

$$
\bar{M} \approx \bar{Z} \text { may be } \bar{Z}^{N F}
$$

$\underset{\substack{\text { IEEEAP } \\ \text { lementidiel }}}{\text { lemen }}$

Preconditioners (for MLFMA)

* Near-Field Preconditioners
* Full-Matrix Preconditioners (Approximate)
* Schur Preconditioners for Dielectric Formulations
- LU (too expensive)
- ILU: Incomplete LU
- SAI: Sparse Approximate Inverse
- INF: Iterative Near-Field Preconditioner

Alternatively: Use more than the available near-field matrix

$$
\bar{Z}^{N F}=\overline{\boldsymbol{L}} \cdot \overline{\boldsymbol{U}}, \quad x=(\overline{\boldsymbol{L}} \cdot \overline{\boldsymbol{U}})^{-1} \cdot \boldsymbol{y}
$$

©BiLCEM ——

