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Motivation 

 Multiple-input, multiple-output (MIMO) links may substantially 

increase spectral efficiency (e.g., IEEE 802.11n, 802.16e) 

 

 In compact receivers, channel impairments such as antenna 

mutual coupling may degrade performance 

 

 Most studies carefully model the impact of these impairments on 

the signal while assuming spatially white noise 

 

 Performance depends equally on both the signal and noise, thus 

noise modeling warrants further consideration 
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Overview 

 Introduction – MIMO capacity 

 Prior work – mutual coupling 

 Noise correlation in compact multi-antenna receivers 

 Optimal front-end design for compact MIMO receivers 

 Conclusions and future work 
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Wireless Communication and Fading 

 Received signal composed of many multipath waves 

 Constructive and destructive interference results in fading 

 Traditional philosophy – Multiple Rx antennas to mitigate fading 

 New philosophy (c. late „90s) – MIMO links to exploit fading 
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MIMO Channel Model 

 Channel model for a frequency flat, N x M MIMO system: 
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MIMO Channel Capacity 

 Capacity – ultimate upper bound on spectral efficiency, 

introduced by Shannon (‟48) for the AWGN channel: 

 

 

 

 MIMO (ergodic) capacity – Telatar (‟95), Foschini & Gans (‟98); 

assumed i.i.d. Rayleigh fading and spatially white AWGN: 
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Receive Propagation Model 

 Write channel matrix as     so that 

  H
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 hi ~ spatial signature 

of ith Tx antenna 

 Clarke (‟68): Signal from xi received as a 

large number of incoherent plane waves 

 

 

 

 

 Capacity for i.i.d. spatial signatures, cf. 

Shiu et al. (‟00), Chiani et al. (‟03): 

 Hw ~ matrix of i.i.d. 
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N x N MIMO Capacity, SNR = 10 dB 

 Capacity still 

increases with 

N at < 0.2! 
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Overview 

 Introduction – MIMO capacity 

 Prior work – mutual coupling 

 Noise correlation in compact multi-antenna receivers 

 Optimal front-end design for compact MIMO receivers 

 Conclusions and future work 
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Mutual Coupling 

 Previous model assumes Rx signal proportional to incident field 

 At close antenna separations (< 0.5) interactions between array 

elements become non-negligible: 
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 Capacity with MC studied by Svantesson (‟01), Janaswamy (‟02), 

and others; matching for max power by Wallace & Jensen (‟04) 
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Antenna Array Circuit Model 
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 Model with a Thevenin equivalent network: 

 
 Off-diagonal elements of ZA represent 

mutual coupling between antennas 
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Matching for Maximum Power Transfer 

 Matching networks interface the array with rest of the receiver: 

H
Ain ZZ 

  IZZ Ain




nn

 Maximum power delivered to load iff                  (Hermitian match) 

 Practical, suboptimal solution:                        (self match) 

 Matching 

network is 

lossless 
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Numerical Example 

 Incident electric field – Clarke‟s model, 10 dB SNR 

 Antenna array – ULA of half-wavelength dipoles with radius of 

10-3; array pattern and impedance matrix computed with NEC 

 

 

 

 

 
 

 

 Find load voltage for Hermitian and self match; add i.i.d. noise: 
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Matching Network Performance 
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 Introduction – MIMO capacity 

 Prior work – mutual coupling 

 Noise correlation in compact multi-antenna receivers 

 Optimal front-end design for compact MIMO receivers 

 Conclusions and future work 
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Noise Correlation 

 Previous studies: 

 Concerned with fading correlation and how it relates to 

mutual coupling 

 Assumed i.i.d. AWGN by convention 

 No mention of physical noise sources 

 Under certain conditions, noise could be spatially correlated: 

 External noise may correlate in the same manner as the 

fading signal 

 Internal noise may correlate through mutual coupling 

 Performance metrics depend on both the signal and noise, so 

noise should warrant further consideration 

 Goal: Extend the previous model to include correlated noise. 

 



17/62 

Recent Work 

 Morris & Jensen (‟05): Realistic model for front-end amplifiers, 

compared matching networks optimized for power and noise 

 Gans (‟06): Antenna and (spatially white) amplifier noise limited 

scenarios; showed matching irrelevant for the former 

 

 Main contributions of this research: 

 Realistic noise model for a multi-antenna receiver, 

characterize various noise sources – noise analysis (Ch. 3) 

 Extend well-known concepts from two-port noise theory to 

multiport networks, develop MIMO low-noise design 

principles (Ch. 4) 
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Receive Diversity with Correlated Noise 

 Consider a 1 x M (SIMO) receive diversity system in which both 

the fading and noise are spatially correlated: 
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 Need a receiver noise model to determine specific form of n 
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Receiver Noise Model 

 Consider a post-detection diversity receiver: 

 Each stage contributes noise to the total output noise n  

 Use noise theory to establish a noise model for each 

component, then calculate output noise correlation n 

 Assume coupling in 

antennas only 
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Antenna Noise 

 Open-circuit voltage now contains noise, vo = hx + no 

 Noise sources include thermal radiation, cosmic background 

and interference from other electronic devices 

Anno R0n
oo

BkT04),,(~ CN

 Thermal noise from a spherically isotropic 

distribution of black-body radiators at 

temperature T0 = 290 K (Twiss ‟55): 

 For antenna separations less than a 

few wavelengths ZA is non-diagonal – 

noise is correlated! 
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Amplifier Noise 

 Amplifiers typically represented by the Rothe-Dahlke (‟56) model: 

econductanc noise equivalent~)4,0(~

resistance noise equivalent~)4,0(~

0

0
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 Noise sources model thermal and shot noise 

 Important amplifier metric is the noise figure NF: 
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 NF function of noise parameters {ra ,ga ,zcor} and source impedance 
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Downstream Noise 

 Downstream components consist of filters, mixers, amplifiers and 

other noisy circuits – a detailed model would be complicated 

 Alternative – assume each component performs a linear operation 

on the complex baseband signals and generates AWGN 

 Can reference total downstream noise to the amplifier output, 

model with a Thevenin equivalent load: 

 

)4,0(~ 0 dd BrkTv CNzL

vd
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Receiver Noise Model 
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Matching for Minimum Noise Figure 

 Noise figure of each amplifier minimized:                    (multiport match) 

 Practical, suboptimal solution: Match for isolated dipoles (self-match) 
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Numerical Results 

 Front-end amplifier: Maxim 2642 LNA, 

 

 

 

 

 Downstream components: Mixer and IF amplifier with composite 

noise figure of 7.6 dB, at input impedance of 50 W (Pozar ‟05): 

 

 

 Calculate diversity gain at 1% outage (Pout = 0.01) for multiport 

matching and self matching 
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Matching Network Performance 
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Individual Noise Sources (Self-Match) 

0 0.2 0.4 0.6 0.8 1

8

10

12

14

16

18

20

d/

D
iv

e
rs

it
y
 G

a
in

 [
d

B
]

Antenna Noise

Amplifier Noise

Downstream Noise

i.i.d. Fading & Noise

M = 4

M = 2



28/62 

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

d/

Normalized Power (per branch) [dB]

Antenna noise

Amplifier noise

Downstream noise

Fading

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d/

Correlation Coeff. Magnitude

Antenna noise

Amplifier noise

Downstream noise

Fading











1

1

i

i

ii P





Fading and Noise Power and Correlation 



29/62 

3D Scattering: Multiport Match B/W 
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3D Scattering: Antenna Noise Strength 
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Downstream Noise and Amp. Unilaterality 
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Directional Fading and Sky Noise 
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Directional Fading and Sky Noise (cont.) 
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Conclusion 

 In a compact receive diversity array, both the signal and noise 

components of the diversity branches may be correlated 

 Traditional MRC is suboptimal for correlated noise 

 Different noise sources can impact performance in profoundly 

different ways: 

 Antenna thermal noise becomes correlated as the antennas 

are brought closer together  – the least detrimental noise 

 Amplifier noise power increases as the antennas are brought 

closer together – the most detrimental noise 

 Downstream noise behaves similar to i.i.d. AWGN – impact 

is between that of antenna and amplifier noise 

 Accurate modeling of the dominant noise sources is critical to 

predicting performance in any multiple-antenna receiver 
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SISO Low-Noise Design 

 

 Antenna o/c voltage contains a signal and noise component: 

 

 At a minimum, thermal noise is present: 
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SISO Low-Noise Design (cont.) 

 Noise factor – measure of noise added by front-end (Friis ‟44):  

 

 
 

 Expression for SNR takes a convenient form: 

 

 

 
 

 

 Most SISO performance metrics are monotonic in the SNR, so 

designing the front-end for minimum noise figure is optimal 

 Question: What is optimal for MIMO receivers? 
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Example: Uncoupled Front Ends 

 Consider M uncoupled front-ends:  
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Example: Uncoupled Front Ends 
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Low-Noise Design Philosophy 

 Goal: Develop low-noise design principles for MIMO receivers 

 SISO low-noise design follows by observing that: 

1. Most SISO performance metrics are monotonic in the SNR 

2. Minimizing the front-end noise factor maximizes the SNR 

 Therefore, designing for minimum noise factor is optimal 

 We will develop MIMO low-noise design principles by: 

1. Demonstrating that several MIMO performance metrics are 

“monotonic” in the SNR matrix  

2. Show that “minimizing” a quantity referred to as the noise 

factor matrix “maximizes” the SNR matrix 
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Capacity (CSIR & Full CSI) 

 CSIR capacity formula may be extended to correlated noise: 

 

 

 In some instances we may obtain full CSI, and the capacity is 

 

 

 

 

 

 Of note is not the details of these and the following metrics, but 

the observation that they are functions of the SNR matrix 
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Spatial Multiplexing 

 CSIR capacity derivation suggests multiplexing N independent 

data streams in space; optimal detector is joint-MAP 

 Reduced-complexity V-BLAST receiver (Wolniansky et al. ‟98) 

forms a linear estimate of x, then performs individual-MAP 

. . .
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Linear 
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 Two popular criteria for choosing A are zero-forcing (ZF) and 

linear minimum mean-square error (MMSE) 

 Both schemes may be used in conjunction with successive 

cancellation (SC) to improve performance: decode streams 

sequentially, subtracting decoded streams from Rx signal 

 Capacity of V-BLAST with ZF-SC and MMSE-SC receivers: 
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Space-Time Coding 

 Space-time block codes (STBCs), (Tarokh et al. ‟98): encode 

over both space and time; may view as a matrix-valued channel:  

 

 

 Maximum-likelihood (ML) detector minimizes probability of error: 

 

 

 Pairwise error probability (PEP) – error prob. of hypothetical 

binary decision X  = {Xi , Xj}. For orthogonal STBCs the PEP is: 
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Beamforming (MIMO-MRC) 

 Previously considered SIMO MRC; with MIMO may also perform 

maximum-ratio transmission (MRT), (Lo ‟99) 

 Combination of MRT and MRC often referred to as MIMO-MRC: 
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Form of Performance Metrics 

 We have presented several MIMO performance metrics: 
 

 

 

 

 

 Each metric is the mean or cdf of a random variable of the form 
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Form of Performance Metrics (cont.) 

 Theorem 1: Consider two otherwise identical MIMO systems 

with SNR matrices               and let 

 

 

 

 

 

 

 This result may be thought of as a generalization of the 

monotonicity of SISO metrics in the SNR 
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Receiver Noise Model 
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MIMO Low-Noise Design 

 In a similar manner to the noise factor of a two-port, define the 

noise factor matrix of the front-end as:  

 

 

 The SNR matrix may be expressed in terms of F: 
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Optimal Matching for Front-End Amps 

 Consider matching M uncoupled amplifiers to an antenna array: 
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CSIR Capacity 
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Full CSI Capacity 
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V-BLAST ZF-SC Capacity 
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V-BLAST MMSE-SC Capacity 
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Orthogonal STBC Coding Gain at 10-3 PEP 
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MIMO-MRC Diversity Gain at 1% Outage 
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Conclusion 

 Scalar measures such as noise figure cannot reliably predict 

receiver performance; both the power and correlation of the 

noise is important 
 

 Designing the front-end for “minimum” noise factor matrix is 

optimal for a large class of performance metrics and receiver 

front-ends 
 

 Developed low-noise design principles may be readily applied to 

specific problems of interest, e.g., optimal amplifier matching 
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Overview 

 Introduction – MIMO capacity 

 Prior work – mutual coupling 

 Noise correlation in compact multi-antenna receivers 

 Optimal front-end design for compact MIMO receivers 

 Conclusions and future work 



59/62 

Summary of Research 

 Prior studies of compact MIMO receivers provided detailed 

models of fading; relatively little attention paid to noise 
 

 Since fading and noise correlation play equal roles in 

determining most performance metrics, need to model both 
 

 Main contributions of this research: 

 Noise analysis: Noise from the antennas, front-end 

amplifiers, and downstream components may affect 

performance in profoundly different ways 

 Low-noise design: Designing the front-end for minimum 

noise factor matrix is optimal for a large class of metrics and 

receivers, e.g., optimal matching for front-end amplifiers 
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Recommendations for Future Work 

 Optimal broadband matching: Matching result derived earlier is 

optimal at the center frequency; may be suboptimal over some 

finite bandwidth. For a ULA of dipoles, 1st order approximation 

 
 

 seems reasonable. However, problem is still quite difficult… 

 Optimal matching for coupled front-ends: We considered a bank 

of uncoupled, identical amplifiers; it would be useful to explore 

other possibilities, e.g., correlated LO noise, SoC, etc. 

 Additional simulations and experimental work: Apply developed 

theory to other antennas (e.g., microstrip) and amplifiers (e.g., 

CMOS). Compare our theoretical predictions on noise 

correlation and its impact with experimental results. 

10)( ZZZA  
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