FDTD Analysis of Body Area Communications Using Basic MATLAB Package

S. Makarov and G. Noetscher ECE Dept., WPI, MA \{makarov,gregn\}@wpi.edu University of Maryland, May 18, 2011 Washington and Northern VA IEEE Chapters

Agenda

- Outline
- Basic FDTD theory
- Why MATLAB ${ }^{\circledR}$?
- Antenna examples
- Wireless body area networks (WBANs) and their applications
- Example of a WBAN network
- FDTD versus FEM
- Body models and sensor arrays
- Continued work

FDTD Theory - Yee grid and material identification

FDTD Theory - Yee grid and material identification (cont.)

Worcester Polytechnic Institute
G. Mur, "The modeling of singularities in the finitedifference approximations of the time-domain electromagnetic-field equations," IEEE Trans. Microw. Theory Tech., vol. MTT-29, no. 10, pp. 1073-1077, Oct. 1981.
C. J. Railton, D. L. Paul, I. J. Craddock, and G. S. Hilton, "The Treatment of Geometrically Small Structures in FDTD by the Modification of Assigned Material Parameters," IEEE Trans. Antennas Prop., vol. APS-53, no. 12, pp. 41294136, Oct. 1981.

FDTD Theory - port model

M. Piket-May, A. Taflove, and J. Baron, "FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads," IEEE Trans. Microwave Theory and Techniques, vol. 42, no. 8, Aug. 1994, pp. 1514-1523.
$-V_{g}(t)+R_{g} I_{g}(t)-\Delta z E_{z}\left(t, x_{e}, y_{e}, z_{e}\right)=0$
$I_{g}(t)=\frac{1}{R_{g}} V_{g}(t)+\frac{\Delta z}{R_{g}} E_{z}\left(t, x_{e}, y_{e}, z_{e}\right)$
$\varepsilon \frac{\partial \vec{E}}{\partial t}=\nabla \times \vec{H}-\vec{J}_{g}$

Worcester Polytechnic Institute

FDTD Theory - NFFT

A. Taflove and K. Umashankar, "Radar cross section of general three-dimensional scatterers," IEEE Trans. Electromagn. Compat., vol. EMC-25, no. 4, Nov. 1983, pp. 433-440.

Worcester Polytechnic Institute

FDTD Theory - marching on in time

FDTD Theory - ABCs/PML

G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations," IEEE Trans.
Electromagn. Compat., vol. EMC-23, no. 4, pp. 377-382, Nov. 1981.
K. K. Mei and J. Fang, "Superabsorption - a method to improve absorbing boundary conditions," IEEE Trans. Antennas and Propagation, vol. 40, no. 9, Sep. 1992, pp. 10011010.

J.-P. Bérenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol. 114, pp. 185-200, Oct. 1994.
J.-P. Bérenger, "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol. 127, pp. 363-379, 1996.

FDTD Theory - putting it all

 together - 1D propagationElectric field (V/m) at $\mathrm{t}=9.9936 \mathrm{~ns}$

\% Electric field source and impedance boundary conditions
$f=1 e 9$; \quad Frequency of interest
Eleft $=2 * \sin (2 * p i * f * t) ; \quad$ Electric field source, left
Eright $=0 * \sin (2 * p i * f * t) ; \quad$ Electric field source, right
Rleft = eta; \% Surface impedance, left boundary
Rright = eta; \% Surface impedance, right boundary
Blinv = 1/(Rleft*epsilon/delta + 1);
Bldir $=$ (Rleft*epsilon/delta - 1);
B2inv $=1 /($ Rright*epsilon/delta +1$) ; \quad \% \quad$ BC coefficient -right
B2dir $=$ (Rright*epsilon/delta - 1); \% BC coefficient -right
e1 $=\left(1-d t * s i g _p r o f i l e . /\left(2 * e p s _p r o f i l e\right)\right) . / .$.
(1 + dt*sig_profile./(2*eps_profile));
$=\left(d t . /\left(d l^{*} e p s _p r o f i l e\right)\right) . / .$.
(1 + dt*sig_profile./(2*eps_profile));
$=1$;
$=d t /(d l * m u)$;
\% Main loop - "bootstrapping"
$\mathrm{n}=1$;
while $\mathrm{n}<=\mathrm{NT}-1$
Enext (1) = B1inv*(Bldir*Epast(1) - 2*Rleft*Hpast(1) + Eleft(n) +Eleft(n+1)); Enext $(\mathrm{Nl}+1)=$ B2inv* (B2dir*Epast $(\mathrm{Nl}+1)+2$ *Rright*Hpast(Nl) + Eright(n) +Eright(n+1));

Enext (indv) $=$ e1(indv).*Epast(indv) - e2(indv).*(Hpast(indv+0) - Hpast(indv-1));
Hnext (indi) $=$ h1* Hpast (indi) - h2* (Enext(indi+1) - Enext(indi-0));
Epast $=$ Enext; Hpast $=$ Hnext; $n=n+1$;

$$
\varepsilon \frac{\partial E}{\partial t}+\frac{\partial H}{\partial y}-\sigma E=0 \Rightarrow \varepsilon \frac{E_{k}^{n+1}-E_{k}^{n}}{\Delta t}+\frac{H_{k+1 / 2}^{n+1 / 2}-H_{k-1 / 2}^{n+1 / 2}}{\Delta y}-\sigma \frac{E_{k}^{n+1}+E_{k}^{n}}{2}=0
$$

$$
\mu \frac{\partial H}{\partial t}+\frac{\partial E}{\partial y}=0 \Rightarrow \mu \frac{H_{k+1 / 2}^{n+3 / 2}-H_{k+1 / 2}^{n+1 / 2}}{\Delta t}+\frac{E_{k+1}^{n+1}-E_{k}^{n+1}}{\Delta y}-\sigma^{*} \frac{H_{k+1 / 2}^{n+3 / 2}+H_{k+1 / 2}^{n+1 / 2}}{2}=0
$$

Resonant effects (Mr. Xu Yang)

$$
Q=\omega \frac{W}{P_{d}}=\frac{\omega \varepsilon_{r} \varepsilon_{0}}{\sigma_{e}}
$$

- Using average body properties of $0.5 \mathrm{~S} / \mathrm{m}$ - Permittivity of $40, \mathrm{Q}$ is 1.79
- Permittivity of $50, \mathrm{Q}$ is 2.24
- Results are for lowest TM mode

Why MATLAB ${ }^{\circledR}$?

- Simple coding:

```
%% E-field update (everywhere except on the boundary, 45% of CPU time)
    ExN(:,2:Ny,2:Nz) = Ex1.*ExP(:,2:Ny,2:Nz) + Ex2.*(diff(HzP(:,:,2:Nz),1,2) -
    diff(HyP(:,2:Ny,:),1,3));
    EyN(2:Nx,:,2:Nz) = Ey1.*EyP(2:Nx,:,2:Nz) + Ey2.*(diff(HxP(2:Nx,:,:),1,3) -
    diff(HzP(:,:,2:Nz),1,1));
    EzN(2:Nx,2:Ny,:) = Ez1.*EzP(2:Nx,2:Ny,:) + Ez2.*(diff(HyP(:,2:Ny,:),1,1) -
    diff(HxP(2:Nx,:,:),1,2));
    %% H-field update (everywhere, 35% of CPU time)
        HxN = Hx1.*HxP + Hx2.*(diff(EyN,1,3)- diff(EzN,1,2));
        HyN = Hy1.*HyP + Hy2.*(diff(EzN,1,1)- diff(ExN,1,3));
    HzN = Hz1.*HzP + Hz2.*(diff(ExN,1,2)- diff(EyN,1,1));
```

- Parallel processor support
- Flexibility
- Simple geometry generation/import
- Low cost
- "Seeing" the fields

Antenna examples

- Patch antennas

- Antenna arrays

- Simple MIMO arrangements

WBANs and their applications

- Wireless Body Area Networks (WBANs) require reliable communication channels
- Many antenna types/configurations
- Path loss must be characterized accurately
- Military, medical and commercial applications
- Wearable antennas
- Out-patient sensor networks
- Medical sensor in-plants
- FCC establishment of Medical Device Radio Communications Service at $401-406 \mathrm{MHz}$
M. J. Burfeindt, E. Zastrow, S. C. Hagness, B. D. Van Veen, and J. E. Medow, "Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer," Phys. Med. Biol. 56 (2011) 2743-2754.
M. Converse, E. J. Bond, B. D. Van Veen, and S. C. Hagness, "A Computational Study of Ultra-Wideband Versus Narrowband Microwave Hyperthermia for Breast Cancer Treatment," IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2169-2180, May 2006.
H. Terchoune, D. Lautru, A. Gati, A.C. Carrasco, M.F. Wong, J. Wiart, V.F. Hanna, "On-body Radio Channel Modeling for Different Human Body Models Using FDTD Techniques," Microwave and Optical Technology Letters, Vol. 51, No. 10, pp 2498-2501, October 2009.
M. Slegban, S. Mazur, C. Törnevik, "Comparisons of Measurements and FDTD Calculations of Mobile Phone Electromagnetic Far-Fields and Near-Fields," Antennas and Propagation Society International Symposium, Montreal, July 1997.
W.G. Scanlon, N.E. Evans, "Numerical analysis of bodyworn UHF antenna systems," Electronics \& Communication Engineering Journal, pp. 55-64, April 2001.
J.N. Bringuier, R. Mittra, J. Wiart, "Efficient Modeling of Body Area Networks using the Parallized FDTD, it's Serial Parallel Extension and the Time Domain Green's Function Method," The 2nd European Conference on Antennas and Propagation, pp. 1-5, 2007.

WPIExample of a WBAN network

- Both Tx and Rx are modeled by small dipole co-polar antennas terminated to a 50Ω series resistance
- Single frequency of 402 MHz
- Voltage/power transfer function is evaluated

$$
\begin{aligned}
& \mathbf{T}_{\mathrm{V}}=\frac{\mathbf{V}_{\text {load }}}{\mathbf{V}_{g}} \\
& \mathbf{T}_{\mathrm{V}}=\frac{1}{2} \mathbf{S}_{21}
\end{aligned}
$$

Our task

- Compare performance of MATLAB FDTD and FEM simulator Ansoft/ANSYS HFSS
- Establish how important the effect of internal body composition is on the performance of wireless link
- Establish how important the effect of body shape variation is on the performance of wireless link

Non-homogeneous Ansoft/ANSYS mesh - FEM simulator

- Constructed of over 300 separate parts
- 2mm resolution
- individual electrical properties
- Perfectly Matched Layer (PML) boundary conditions
- Simulated in Ansoft/ANSYS HFSS via FEM
- Scattering parameters found directly

Homogenous mesh - FDTD

simulator

- One equivalent homogenous body model
- Rel. dielectric constant of 50
- Conductivity of $0.5 \mathrm{~S} / \mathrm{m}$
- Simulation domain of 310,000 brick elements coded in MATALB
- Mur ABCs
- Voltage TF is evaluated

Simulation results

Case 04_01:

Antenna position: $X=206.5 \mathrm{~mm}, Z=-130.5 \mathrm{~mm}$.

Adaptive Step Mesh Size (elements)	Z-matrix, $\boldsymbol{\Omega}$	S-Matrix	Received voltage amplitude, mV Ansoft/ANSYS (top) FDTD (bottom)	$\begin{gathered} \text { ANSOFT } \\ \text { Runtime } \\ \text { (HH:MM:SS) } \end{gathered}$
$\stackrel{1}{388,240}$	$\begin{gathered} \mathrm{Z}_{12}=86-88.1^{\circ} \\ \mathrm{Z}_{22}=170.8-87.7^{\circ} \\ \mathrm{Z}_{21}=0.499-167^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.97111-60.3^{\circ} \\ \mathrm{S}_{22} & =0.9782-32.6^{\circ} \\ \mathrm{S}_{21} & =2.75 \mathrm{e}-3-36.9^{\circ} \end{aligned}$	1.4	01:18:19
			0.119	
$\begin{gathered} 2 \\ 465,892 \end{gathered}$	$\begin{aligned} & \hline \mathrm{Z}_{11}=236.47-89.1^{\circ} \\ & \mathrm{Z}_{22}=327.1-88.7^{\circ} \\ & \mathrm{Z}_{21}=0.4686-171^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.99347-23.9^{\circ} \\ \mathrm{S}_{22} & =0.99312-17.4^{\circ} \\ \mathrm{S}_{21} & =5.821 \mathrm{e}-4-13.5^{\circ} \end{aligned}$	0.291	02:56:47
			0.119	
$\begin{gathered} 3 \\ 559,074 \end{gathered}$	$\begin{gathered} \mathrm{Z}_{11}=397.68-89.4^{\circ} \\ \mathrm{Z}_{22}=425.97-89.1^{\circ} \\ \mathrm{Z}_{21}=0.48-171^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.99724-14.5^{\circ} \\ \mathrm{S}_{22} & =0.99619-13.4^{\circ} \\ \mathrm{S}_{21} & =2.825 \mathrm{e}-4-6.11^{\circ} \end{aligned}$	0.139	05:41:02
			0.119	
$\begin{gathered} 4 \\ 670,892 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=448.5-89.5^{\circ} \\ & \mathrm{Z}_{22}=462.2-89.2^{\circ} \\ & \mathrm{Z}_{21}=0.464-170^{\circ} \end{aligned}$	$\begin{aligned} \hline \mathrm{S}_{11} & =0.99789-12.7^{\circ} \\ \mathrm{S}_{22} & =0.99697-12.3^{\circ} \\ \mathrm{S}_{21} & =2.206 e-4-4.37^{\circ} \end{aligned}$	0.11	10:30:06
			0.119	
$\stackrel{5}{805,074}$	$\begin{aligned} & \mathrm{Z}_{11}=474.4-89.5^{\circ} \\ & \mathrm{Z}_{22}=477.4-89.2^{\circ} \\ & \mathrm{Z}_{21}=0.4498-170^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.99818-12^{\circ} \\ \mathrm{S}_{22} & =0.99724-12^{\circ} \\ \mathrm{S}_{21} & =1.96 \mathrm{e}-4-3.65^{\circ} \end{aligned}$	0.098	15:19:00
			0.119	
$\begin{gathered} 6 \\ 966,089 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=483.3-89.5^{\circ} \\ & \mathrm{Z}_{22}=484.8-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.4447-170^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.99826-11.8^{\circ} \\ \mathrm{S}_{22} & =0.99737-11.8^{\circ} \\ \mathrm{S}_{21} & =1.874 \mathrm{e}-4-3.38^{\circ} \end{aligned}$	0.0937	20:14:30
			0.119	
$\stackrel{7}{7}$	$\begin{aligned} & \hline \mathrm{Z}_{11}=489.59-89.5^{\circ} \\ & \mathrm{Z}_{22}=488.2-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.4425-170^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.9983-11.7^{\circ} \\ & \mathrm{S}_{22}=0.99742-11.7^{\circ} \\ & \mathrm{S}_{21}=1.835 \mathrm{e}-4-3.24^{\circ} \end{aligned}$	0.0914	27:09:30
			0.119	
$\stackrel{8}{8}$	$\begin{aligned} & \mathrm{Z}_{11}=489.6-89.5^{\circ} \\ & \mathrm{Z}_{22}=490.1-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.441-170^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{S}_{11}=0.9983-11.7^{\circ} \\ \mathrm{S}_{22}=0.99745-11.6^{\circ} \\ \mathrm{S}_{21}=1.816 \mathrm{e}-4-3.18^{\circ} \end{gathered}$	0.0908	23:29:10
			0.119	

Simulation results (cont'd.)

Case 04_02:

Antenna position: $X=206.5 \mathrm{~mm}, Z=-190.5 \mathrm{~mm}$.

Adaptive Step Mesh Size (elements)	Z-matrix, $\boldsymbol{\Omega}$	S-Matrix	Received voltage amplitude, mV Ansoft/ANSYS (top) FDTD (bottom)	$\begin{gathered} \text { ANSOFT } \\ \text { Runtime } \\ \text { (HH:MM:SS) } \end{gathered}$
$\begin{gathered} 1 \\ 388,089 \end{gathered}$	$\begin{gathered} \mathrm{Z}_{11}=106.7-88.1^{\circ} \\ \mathrm{Z}_{22}=54.8-88.4^{\circ} \\ \mathrm{Z}_{21}=0.208166^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.9753-50.2^{\circ} \\ \mathrm{S}_{22} & =0.97288-84.7^{\circ} \\ \mathrm{S}_{21} & =2.316 \mathrm{e}-3-83.7^{\circ} \end{aligned}$	1.2	01:09:17
			0.09	
$\stackrel{2}{465,709}$	$\begin{gathered} \mathrm{Z}_{11}=287.8-89 . .^{\circ} \\ \mathrm{Z}_{22}=180.45-8.8 .8^{\circ} \\ \mathrm{Z}_{21}=0.2555168^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.9963-19.7^{\circ} \\ \mathrm{S}_{22} & =0.9896-31^{\circ} \\ \mathrm{S}_{21} & =4.638 \mathrm{e}-4-39.2^{\circ} \end{aligned}$	0.232	02:31:47
			0.09	
$\begin{gathered} 3 \\ 558,855 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=394.7-89.5^{\circ} \\ & \mathrm{Z}_{22}=354.7-89.1^{\circ} \\ & \mathrm{Z}_{21}=0.3348169^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9977-14.4^{\circ} \\ \mathrm{S}_{22} & =0.9957-16^{\circ} \\ \mathrm{S}_{21} & =2.341 \mathrm{e}-4-27.6^{\circ} \end{aligned}$	0.117	05:15:30
			0.09	
$\begin{gathered} 4 \\ 670,631 \end{gathered}$	$\begin{aligned} \mathrm{Z}_{11} & =449.5-89.5^{\circ} \\ \mathrm{Z}_{22} & =440-89.2^{\circ} \\ \mathrm{Z}_{21} & =0.3517169^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{S}_{11}=0.9982-12.7^{\circ} \\ \mathrm{S}_{22}=0.997-13^{\circ} \\ \mathrm{S}_{21}=1.7518 \mathrm{e}-4-25 \end{gathered}$	0.0876	10:37:06
			0.09	
$\stackrel{5}{804,762}$	$\begin{aligned} & \mathrm{Z}_{11}=471.5-89.6^{\circ} \\ & \mathrm{Z}_{22}=470.4-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.3468169^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9984-12.1^{\circ} \\ \mathrm{S}_{22} & =0.9974-12.1^{\circ} \\ \mathrm{S}_{21} & =1.5431 \mathrm{e}-4-24.1^{\circ} \end{aligned}$	0.0772	17:58:02
			0.09	
$\stackrel{6}{964,718}$	$\begin{aligned} \mathrm{Z}_{11} & =481.3-89.6^{\circ} \\ \mathrm{Z}_{22} & =482-89.3^{\circ} \\ \mathrm{Z}_{21} & =0.343169^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9985-12.1^{\circ} \\ \mathrm{S}_{22} & =0.9975-12.1^{\circ} \\ \mathrm{S}_{21} & =1.4598 \mathrm{e}-4-24.1^{\circ} \end{aligned}$	0.073	22:26:22
			0.09	
$\begin{gathered} 7 \\ 1,054,674 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=486.7-89.6^{\circ} \\ & \mathrm{Z}_{22}=487.1-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.3406169^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9985-11.7^{\circ} \\ \mathrm{S}_{22} & =0.9976-11.7^{\circ} \end{aligned}$	0.071	24:53:08
			0.09	
8	Matrix Solve Exception: Failed		0.09	

Simulation results (cont'd.)

Case 04_03:

Antenna position: $X=206.5 \mathrm{~mm}, Z=-390.5 \mathrm{~mm}$.

Adaptive Step Mesh Size (elements)	Z-matrix, $\boldsymbol{\Omega}$	S-Matrix	Received voltage amplitude, mV Ansoft/ANSYS (top) FDTD (bottom)	ANSOFT Runtime (HH:MM:SS)
$\begin{gathered} 1 \\ 400,358 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=156.6-88.3^{\circ} \\ & \mathrm{Z}_{22}=95.86-87.9^{\circ} \\ & \mathrm{Z}_{21}=0.072-32.6^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.98264-35.4^{\circ} \\ & \mathrm{S}_{22}=0.96984-55.1^{\circ} \\ & \mathrm{S}_{21}=3.95 \mathrm{e}-498.9^{\circ} \end{aligned}$	0.1975	01:41:35
			0.008	
$\begin{gathered} 2 \\ 480,430 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=308.1-89.2^{\circ} \\ & \mathrm{Z}_{22}=264.2-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.061-35.1^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{S}_{11}}=0.99543-18.4^{\circ} \\ & \mathrm{S}_{22}=0.99556-21.4^{\circ} \\ & \mathrm{S}_{21}=7.291 \mathrm{e}-5 \quad 123^{\circ} \end{aligned}$	0.0362	03:09:06
			0.008	
$\begin{gathered} 3 \\ 576,520 \end{gathered}$	$\begin{gathered} \mathrm{Z}_{11}=417.9-89.4^{\circ} \\ \mathrm{Z}_{22}=405.4-89.5^{\circ} \\ \mathrm{Z}_{21}=0.059-35^{\circ} \end{gathered}$	$\begin{aligned} & \mathrm{S}_{11}=0.99773-13.6^{\circ} \\ & \mathrm{S}_{22}=0.99792-14.1^{\circ} \\ & \mathrm{S}_{21}=3.441 \mathrm{e}-5 \quad 130^{\circ} \end{aligned}$	0.0171	06:38:42
			0.008	
$\begin{gathered} 4 \\ 691,827 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=455.0-89.5^{\circ} \\ & \mathrm{Z}_{22}=454.5-89.6^{\circ} \\ & \mathrm{Z}_{21}=0.0563-35.1^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.99819-12.5^{\circ} \\ \mathrm{S}_{22} & =0.99844-12.6^{\circ} \\ \mathrm{S}_{21} & =2.684 \mathrm{e}-5 \quad 132^{\circ} \end{aligned}$	0.0134	10:49:25
			0.008	
$\begin{gathered} 5 \\ 830,194 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=473.6-89.6^{\circ} \\ & \mathrm{Z}_{22}=473.8-89.6^{\circ} \\ & \mathrm{Z}_{21}=0.0546-34.7^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9984-12.1^{\circ} \\ \mathrm{S}_{22} & =0.9986-12^{\circ} \\ \mathrm{S}_{21} & =2.4 \mathrm{e}-5 \quad 132^{\circ} \end{aligned}$	0.012	13:43:17
			0.008	
$\stackrel{6}{996,235}$	$\begin{aligned} & \mathrm{Z}_{11} \\ &=482.5-89.6^{\circ} \\ & \mathrm{Z}_{22}=482.6-8.89 .6^{\circ} \\ & \mathrm{Z}_{21}=0.0538-34.7^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.9985-11.8^{\circ} \\ & \mathrm{S}_{22}=0.9987-11.8^{\circ} \\ & \mathrm{S}_{21}=2.281 \mathrm{e}-5133^{\circ} \end{aligned}$	0.011	22:12:00
			0.008	
$\begin{gathered} 7 \\ 1,130,503 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=486.9-89.6^{\circ} \\ & \mathrm{Z}_{22}=487-89.6^{\circ} \\ & \mathrm{Z}_{21}=0.0533-34.7^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.9985-11.7^{\circ} \\ & \mathrm{S}_{22}=0.9987-11.7^{\circ} \\ & \mathrm{S}_{21}=2.221 \mathrm{e}-5133^{\circ} \end{aligned}$	0.011	22:08:02
			0.008	
$\stackrel{8}{8}$	$\begin{aligned} & \mathrm{Z}_{11}=489.4-89.6^{\circ} \\ & \mathrm{Z}_{22}=489.35-89.6^{\circ} \\ & \mathrm{Z}_{21}=0.0531-34.7^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9986-11.7^{\circ} \\ \mathrm{S}_{22} & =0.9987-11.7^{\circ} \\ \mathrm{S}_{21} & =2.1896 \mathrm{e}-5133^{\circ} \end{aligned}$	0.011	27:55:01
			0.008	

Simulation results (cont'd.)

Case 04_04:

Antenna position: $X=306.5 \mathrm{~mm}, Z=-390.5 \mathrm{~mm}$.

Adaptive Step Mesh Size (elements)	Z-matrix, $\boldsymbol{\Omega}$	S-Matrix	Received voltage amplitude, mV Ansoft/ANSYS (top) FDTD (bottom)	ANSOFT Runtime (HH:MM:SS)
$\begin{gathered} 1 \\ 400,142 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=68.6-85.7^{\circ} \\ & \mathrm{Z}_{22}=56.3-80.9^{\circ} \\ & \mathrm{Z}_{21}=0.164-10.9^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.9304-72.1^{\circ} \\ & \mathrm{S}_{22}=0.85301-83.1^{\circ} \\ & \mathrm{S}_{21}=2.295888-3- \\ & 83.6^{\circ} \end{aligned}$	1.2	01:02:58
			0.0223	
$\stackrel{2}{480,173}$	$\begin{aligned} & \mathrm{Z}_{11}=164.7-88.0^{\circ} \\ & \mathrm{Z}_{22}=229.0-88.1^{\circ} \\ & \mathrm{Z}_{21}=0.1356 .3^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.9805-33.8^{\circ} \\ & \mathrm{S}_{22}=0.98599-24.6^{\circ} \\ & \mathrm{S}_{21}=3.2975 \mathrm{e}-4153^{\circ} \end{aligned}$	0.165	02:56:59
			0.0223	
$\begin{gathered} 3 \\ 576,213 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=345.9-88 . .^{\circ} \\ & \mathrm{Z}_{22}=397.4-89 . .^{\circ} \\ & \mathrm{Z}_{21}=0.1278 .2^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.99435-16.4^{\circ} \\ \mathrm{S}_{22} & =0.99623-14.3^{\circ} \\ \mathrm{S}_{21} & =9.0199 \mathrm{e}-5171^{\circ} \end{aligned}$	0.045	07:05:07
			0.0223	
$\begin{gathered} 4 \\ 691,457 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=433.7-88.2^{\circ} \\ & \mathrm{Z}_{22}=451.4-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.1127 .5^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{S}_{11}=0.99675-13.2^{\circ} \\ \mathrm{S}_{22}=0.99732-12.6^{\circ} \\ \mathrm{S}_{21}=5.6095 \mathrm{e}-5 \quad 173^{\circ} \end{gathered}$	0.028	12:33:51
			0.0223	
$\stackrel{5}{829,750}$	$\begin{gathered} \mathrm{Z}_{11}=466.8-89.3^{\circ} \\ \mathrm{Z}_{22}=474.1-89.4^{\circ} \\ \mathrm{Z}_{21}=0.1077 .7^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.9973-12.2^{\circ} \\ \mathrm{S}_{22} & =0.99769-12^{\circ} \\ \mathrm{S}_{21} & =4.7411 \mathrm{e}-5 \quad 174^{\circ} \end{aligned}$	0.024	16:46:48
			0.0223	
$\stackrel{6}{995,703}$	$\begin{aligned} & \mathrm{Z}_{11}=480.7-89.3^{\circ} \\ & \mathrm{Z}_{22}=483.9-99.4^{\circ} \\ & \mathrm{Z}_{21}=0.1057 .75^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9975-11.9^{\circ} \\ \mathrm{S}_{22} & =0.9978-11.8^{\circ} \\ \mathrm{S}_{21} & =4.4255 \mathrm{e}-5175^{\circ} \end{aligned}$	0.022	21:00:35
			0.0223	
$\begin{gathered} 7 \\ 1,088,680 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=486.7-89.3^{\circ} \\ & \mathrm{Z}_{22}=488.5-89.4^{\circ} \\ & \mathrm{Z}_{21}=0.1037 .76^{\circ} \end{aligned}$	$\begin{aligned} \hline \mathrm{S}_{11} & =0.9975-11.9^{\circ} \\ \mathrm{S}_{22} & =0.9978-11.8^{\circ} \\ \mathrm{S}_{21} & =4.426 e-5 \quad 175^{\circ} \end{aligned}$	0.021	24:23:31
			0.0223	
$\stackrel{8}{1,226,879}$	$\begin{aligned} & \mathrm{Z}_{11}=489.8-89.3^{\circ} \\ & \mathrm{Z}_{22}=490.9-89.4^{\circ} \\ & \mathrm{Z}_{21}=0.1037 .77^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9977-11.7^{\circ} \\ \mathrm{S}_{22} & =0.9979-11.6^{\circ} \\ \mathrm{S}_{21} & =4.227 \mathrm{e}-5 \quad 175^{\circ} \end{aligned}$	0.021	29:32:16
			0.0223	

Simulation results (cont'd.)

Case 04_05:
Antenna position: $X=156.5 \mathrm{~mm}, Z=-390.5 \mathrm{~mm}$.

Adaptive Step Mesh Size (elements)	Z-matrix, $\boldsymbol{\Omega}$	S-Matrix	Received voltage amplitude, mV Ansoft/ANSYS (top) FDTD (bottom)	ANSOFT Runtime (HH:MM:SS)
$\begin{gathered} 1 \\ 400,193 \end{gathered}$	$\begin{gathered} \mathrm{Z}_{11}=165.8-88^{\circ} \\ \mathrm{Z}_{22}=226.3-88.2^{\circ} \\ \mathrm{Z}_{21}=0.171-29.3^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.981-33.5^{\circ} \\ \mathrm{S}_{22} & =0.9872-24.9^{\circ} \\ \mathrm{S}_{21} & =4.187 \mathrm{e}-4118^{\circ} \end{aligned}$	0.21	01:10:16
			0.0349	
$\underset{480,239}{2}$	$\begin{gathered} \mathrm{Z}_{11}=319.4-89^{\circ} \\ \mathrm{Z}_{22}=356.7-88.8^{\circ} \\ \mathrm{Z}_{21}=0.161-25^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.9947-17.8^{\circ} \\ \mathrm{S}_{22} & =0.9945-16^{\circ} \\ \mathrm{S}_{21} & =1.378 \mathrm{e}-4136^{\circ} \end{aligned}$	0.069	02:46:16
			0.0349	
$\begin{gathered} 3 \\ 576,290 \end{gathered}$	$\begin{aligned} \mathrm{Z}_{11} & =418.4-89.2^{\circ} \\ \mathrm{Z}_{22} & =415.2-89^{\circ} \\ \mathrm{Z}_{21} & =0.156-23.5^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9969-13.6^{\circ} \\ \mathrm{S}_{22} & =0.996-13.7^{\circ} \\ \mathrm{S}_{21} & =8.8249 \mathrm{e}-5141^{\circ} \end{aligned}$	0.044	05:05:49
			0.0349	
$\begin{gathered} 4 \\ 691,549 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=451.98-89.3^{\circ} \\ & \mathrm{Z}_{22}=436.8 .89 .1^{\circ} \\ & \mathrm{Z}_{21}=0.151-23.1^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.9974-12.6^{\circ} \\ & \mathrm{S}_{22}=0.9964-13.1^{\circ} \\ & \mathrm{S}_{21}=7.5194 \mathrm{e}-5143^{\circ} \end{aligned}$	0.038	08:19:50
			0.0349	
$\stackrel{5}{529,863}$	$\begin{gathered} \mathrm{Z}_{11}=465.7-89.4^{\circ} \\ \mathrm{Z}_{22}=446.2-89.1^{\circ} \\ \mathrm{Z}_{21}=0.148-23^{\circ} \end{gathered}$	$\begin{aligned} & \mathrm{S}_{11}=0.9976-12.3^{\circ} \\ & \mathrm{S}_{22}=0.9966-12.8^{\circ} \\ & \mathrm{S}_{21}=7.0322 \mathrm{e}-5 \quad 143^{\circ} \end{aligned}$	0.035	12:26:51
			0.0349	
$\stackrel{6}{9}$	$\begin{aligned} & \mathrm{Z}_{11}=472.2-89.4^{\circ} \\ & \mathrm{Z}_{22}=451.5-89.1^{\circ} \\ & \mathrm{Z}_{21}=0.147-22.9^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9977-12.1^{\circ} \\ \mathrm{S}_{22} & =0.9967-12.6^{\circ} \\ \mathrm{S}_{21} & =6.7928 \mathrm{e}-5 \mathrm{~F} 43^{\circ} \end{aligned}$	0.034	17:21:15
			0.0349	
$\stackrel{7}{1,134,472}$	$\begin{aligned} & \mathrm{Z}_{11}=475.5-89.4^{\circ} \\ & \mathrm{Z}_{22}=454.2-89.1^{\circ} \\ & \mathrm{Z}_{21}=0.146-22.9^{\circ} \end{aligned}$	$\begin{array}{rl} \mathrm{S}_{11} & 0.9978-12^{\circ} \\ \mathrm{S}_{22} & =0.9968-12.6^{\circ} \\ \mathrm{S}_{21} & =6.675 \mathrm{e}-5143^{\circ} \end{array}$	0.033	25:49:41
			0.0349	
$\stackrel{8}{8}$	$\begin{aligned} & \mathrm{Z}_{11}=477.3-89.4^{\circ} \\ & \mathrm{Z}_{22}=455.7-89.1^{\circ} \\ & \mathrm{Z}_{21}=0.146-22.9^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{S}_{11}=0.9978-12^{\circ} \\ \mathrm{S}_{22}=0.9968-12.5^{\circ} \\ \mathrm{S}_{21}=6.6123 \mathrm{e}-5143^{\circ} \end{gathered}$	0.033	27:57:15
			0.0349	

Simulation results (cont'd.)

Case 04_06:

Antenna position: $X=146.5 \mathrm{~mm}, Z=-390.5 \mathrm{~mm}$.

Adaptive Step Mesh Size (elements)	Z-matrix, $\boldsymbol{\Omega}$	S-Matrix	Received voltage amplitude, mV Ansoft/ANSYS (top) FDTD (bottom)	ANSOFT Runtime (HH:MM:SS)
$\begin{gathered} 1 \\ 400,328 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=192.7-8.5^{\circ} \\ & \mathrm{Z}_{22}=219.8-87.0^{\circ} \\ & \mathrm{Z}_{21}=0.174-14.9^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.987-29.1^{\circ} \\ \mathrm{S}_{22} & =0.9796-25.6^{\circ} \\ \mathrm{S}_{21} & =3.8133 \mathrm{e}-4 \quad 154^{\circ} \end{aligned}$	0.191	01:09:04
			0.0581	
$\begin{gathered} 2 \\ 480,422 \end{gathered}$	$\begin{gathered} \mathrm{Z}_{11}=350.8-88.7^{\circ} \\ \mathrm{Z}_{22}=328.8-88^{\circ} \\ \mathrm{Z}_{21}=0.207-11.4^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{S}_{11}=0.9939-16.2^{\circ} \\ \mathrm{S}_{22}=0.9899-17.3^{\circ} \\ \mathrm{S}_{21}=1.74 \mathrm{e}-4 \quad 149^{\circ} \end{gathered}$	0.087	02:58:32
			0.0581	
$\begin{gathered} 3 \\ 576,510 \end{gathered}$	$\begin{aligned} \mathrm{Z}_{11} & =414.5-89^{\circ} \\ \mathrm{Z}_{22} & =371.4-88.2^{\circ} \\ \mathrm{Z}_{21} & =0.202-10.2^{\circ} \end{aligned}$	$\begin{aligned} & \hline \mathrm{S}_{11}=0.9957-13.8^{\circ} \\ & \mathrm{S}_{22}=0.9919-15.3^{\circ} \\ & \mathrm{S}_{21}=1.28 \mathrm{e}-4 \quad 153^{\circ} \end{aligned}$	0.063	04:52:22
			0.0581	
$\begin{gathered} 4 \\ 691,815 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=441.1-89.1^{\circ} \\ & \mathrm{Z}_{22}=388.3-88.3^{\circ} \\ & \mathrm{Z}_{21}=0.196-9.8^{\circ} \end{aligned}$	$\begin{gathered} \hline \mathrm{S}_{11}=0.9963-12.9^{\circ} \\ \mathrm{S}_{22}=0.9926-14.7^{\circ} \\ \mathrm{S}_{21}=1.124 \mathrm{e}-4 \quad 154^{\circ} \end{gathered}$	0.056	08:11:20
			0.0581	
$\begin{gathered} 5 \\ 830,184 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=451.4-89.1^{\circ} \\ & \mathrm{Z}_{22}=395.6-88.4^{\circ} \\ & \mathrm{Z}_{21}=0.194-9.8^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{S}_{11}=0.9965-12.6^{\circ} \\ \mathrm{S}_{22}=0.9929-14.4^{\circ} \\ \mathrm{S}_{21}=1.0678 \mathrm{e}-4 \quad 154^{\circ} \end{gathered}$	0.053	11:19:46
			0.0581	
$\begin{gathered} 6 \\ 996,227 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=456.8-89 . .^{\circ} \\ & \mathrm{Z}_{22}=399.5-88.4^{\circ} \\ & \mathrm{Z}_{21}=0.193-9.7^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9967-12.5^{\circ} \\ \mathrm{S}_{22} & =0.9931-14.3^{\circ} \\ \mathrm{S}_{21} & =1.0401 \mathrm{e}-4154^{\circ} \end{aligned}$	0.052	15:19:59
			0.0581	
$\begin{gathered} 7 \\ 1,179,976 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=459.4-89.1^{\circ} \\ & \mathrm{Z}_{22}=401.4-88.4^{\circ} \\ & \mathrm{Z}_{21}=0.193-9.63^{\circ} \end{aligned}$	$\begin{aligned} \hline \mathrm{S}_{11} & =0.9967-12.4^{\circ} \\ \mathrm{S}_{22} & =0.9932-14.2^{\circ} \\ \mathrm{S}_{21} & =1.0266 \mathrm{e}-4 \quad 155^{\circ} \end{aligned}$	0.051	20:58:45
			0.0581	
$\stackrel{8}{1,280,114}$	$\begin{aligned} & \mathrm{Z}_{11}=460.7-89.1^{\circ} \\ & \mathrm{Z}_{22}=402.4-88.4^{\circ} \\ & \mathrm{Z}_{21}=0.193-9.62^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.9967-12.4^{\circ} \\ \mathrm{S}_{22} & =0.9932-14.2^{\circ} \\ \mathrm{S}_{21} & =1.0199 \mathrm{e}-4155^{\circ} \end{aligned}$	0.051	25:08:17
			0.0581	

Simulation results (cont'd.)

Case 04_07:

Antenna position: $X=356.5 \mathrm{~mm}, Z=-390.5 \mathrm{~mm}$.

Adaptive Step Mesh Size (elements)	Z-matrix, Ω	S-Matrix	Received voltage amplitude, mV Ansoft/ANSYS (top) FDTD (bottom)	ANSOFT Runtime (HH:MM:SS)
$\stackrel{1}{1}$	$\begin{gathered} \mathrm{Z}_{11}=51.76-83.3^{\circ} \\ \mathrm{Z}_{22}=75-84.5^{\circ} \\ \mathrm{Z}_{21}=0.186-25.7^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{S}_{11}=0.8893-88^{\circ} \\ \mathrm{S}_{22}=0.9149-6 . .^{\circ} \\ \mathrm{S}_{21}=2.59-595 \mathrm{e}-3 \\ 69.3^{\circ} \end{gathered}$	1.3	01:11:38
			0.0246	
$\stackrel{2}{2}$	$\begin{gathered} \mathrm{Z}_{11}=134.2-87.5^{\circ} \\ \mathrm{Z}_{22}=209-87.9^{\circ} \\ \mathrm{Z}_{21}=0.153-21.6^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.9721-40.9^{\circ} \\ \mathrm{S}_{22} & =0.9838-26.9^{\circ} \\ \mathrm{S}_{21} & =4.854 \mathrm{e}-4 \quad 120^{\circ} \end{aligned}$	0.243	03:12:03
			0.0246	
$\begin{gathered} 3 \\ 575,834 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=328.2-88.7^{\circ} \\ & \mathrm{Z}_{22}=377.5-88.9^{\circ} \\ & \mathrm{Z}_{21}=0.166-18.3^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{S}_{11}=0.9932-17.3^{\circ} \\ \mathrm{S}_{22}=0.9952-15.1^{\circ} \\ \mathrm{S}_{21}=1.303 \mathrm{c}^{\circ} \mathrm{e}-4 \\ 143^{\circ} \end{gathered}$	0.063	07:24:23
			0.0246	
$\begin{gathered} 4 \\ 691,003 \end{gathered}$	$\begin{gathered} \mathrm{Z}_{11}=423-89^{\circ} \\ \mathrm{Z}_{22}=444.9-89.2^{\circ} \\ \mathrm{Z}_{21}=0.152-17.7^{\circ} \end{gathered}$	$\begin{aligned} \mathrm{S}_{11} & =0.996-13.5^{\circ} \\ \mathrm{S}_{22} & =0.9969-12.8^{\circ} \\ \mathrm{S}_{21} & =7.961 \mathrm{e}-5 \quad 147^{\circ} \end{aligned}$	0.04	12:41:40
			0.0246	
$\stackrel{5}{5}$	$\begin{aligned} \mathrm{Z}_{11} & =463.7-89.2^{\circ} \\ \mathrm{Z}_{22} & =473-89.3^{\circ} \\ \mathrm{Z}_{21} & =0.142-17.7^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{11}=0.997-12.3^{\circ} \\ & \mathrm{S}_{22}=0.9974-1.2 .1^{\circ} \\ & \mathrm{S}_{21}=6.38999 \mathrm{e}-5 \\ & 149^{\circ} \end{aligned}$	0.032	16:49:03
			0.0246	
$\stackrel{6}{995,047}$	$\begin{aligned} & \mathrm{Z}_{11}=479.8-89.2^{\circ} \\ & \mathrm{Z}_{22}=483.7-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.138-17.8^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.9973-11.9^{\circ} \\ \mathrm{S}_{22} & =0.9977-11.8^{\circ} \\ \mathrm{S}_{21} & =5.879 \mathrm{e}-5149^{\circ} \end{aligned}$	0.029	21:27:27
			0.0246	
$\begin{gathered} 7 \\ 1,102,183 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=486.9-89.3^{\circ} \\ & \mathrm{Z}_{22}=488.9-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.136-17.8^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{S}_{11}=0.9974-11.7^{\circ} \\ \mathrm{S}_{22}=0.9977-11.7^{\circ} \\ \mathrm{S}_{21}=5.655 \mathrm{e}-5149^{\circ} \end{gathered}$	0.028	24:56:38
			0.0246	
$\begin{gathered} 8 \\ 1,164,687 \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{11}=490.4-89.3^{\circ} \\ & \mathrm{Z}_{22}=491.2-89.3^{\circ} \\ & \mathrm{Z}_{21}=0.136-17.8^{\circ} \end{aligned}$	$\begin{aligned} \mathrm{S}_{11} & =0.99746-12.4^{\circ} \\ \mathrm{S}_{22} & =0.9977-14.2^{\circ} \\ \mathrm{S}_{21} & =5.556 \mathrm{e}-5155^{\circ} \end{aligned}$	0.028	25:47:53
			0.0246	

Relative error comparison

Case Number	Estimated Relative Error of Received Voltage (\%) : FDTD vs. the finest FEM mesh $\delta=\frac{\left\|v_{\text {HRSS }}-v_{\text {FDTD }}\right\|}{v_{\text {HRFS }}} \times 100$	Ansoft/ANSYS HFSS Runtime (HH:MM:SS)	FDTD Runtime (MM:SS)
1	23.7	23:29:10	10:57
2	21.1	24:53:08	15:22
3	27	27:55:01	28:01
4	6.19	29:32:16	28:12
5	5.76	27:57:15	27:51
6	13.9	25:08:17	15:12
7	12.1	25:47:53	27:45

Worcester Polytechnic Institute

Testing different body shapes

Case Designation	Received Voltage (mV)
WPI Male A	0.119
WPI Male B	0.119
Ansys Mesh	0.119

Worcester Polytechnic Institute

- Performed code-to-code validation
- Established that FDTD is superior to FEM w.r.t. CPU time
- Established that:
- Out-of-body wireless link weakly depends on internal body composition
- Out-of-body wireless link weakly depends on body shape
- Critical diffraction parameters include path length and body area projected onto the plane perpendicular to path

Body models: custom mesh creation

- Surface meshes for four human volunteer body models were created using a 3D scanner at U.S. Army Natick Soldier Research, Development and Engineering Center

- Manufactured by Cyberware, the Whole Body Color 3D Scanner, Model WB4, can acquire shape and color of the entire body in a single pass and output a variety of digital formats.
- More info is available at the company website: http://www.cyberware.com/products/scanners/wb4.html

Mesh manipulation

- Meshlab is an open source tool used for mesh manipulation. Capabilities include:
- Variety of import and export formats
- Surface mesh construction
- Patching of surface voids
- Mesh smoothing
- http://meshlab.sourceforge.net

FDTD implementation

- Uniform 3D FDTD grid constructed
- Cell centers tested if inside mesh manifold, electrical constants modified
- FDTD solution of Maxwell's equations

Worcester Polytechnic Institute

Mesh variations

A variety of body positions are available.

Worcester Polytechnic Institute

Human phantoms-torso digitization

- Image of torso and digital
representation after 3D scanning.
- Phantom provided by The Phantom
Laboratory

Torso mesh

Case Designation	Vertices	Faces
Original	60,005	120,002
Reduction1	12,003	24,000
Reduction2	1,202	2,400

Worcester Polytechnic Institute

- 1×8 dipole array
- Homogeneous body
- Near-field scanning array task: $\sim 2 \lambda \times 2 \lambda \times 2 \lambda$ domain

Worcester Polytechnic Institute

Human phantoms - head

Phantom from The Phantom Laboratory

Head mesh

Case Designation	Vertices	Faces
Original	297,149	594,490
Reduction1	8,918	17,832
Reduction2	2,229	4,458

Worcester Polytechnic Institute

WPI A near-field scanning array - head

- 1x8 dipole array
- Homogeneous body
- Near-field scanning array task: ~2 $\times 2 \lambda \times 2 \lambda$ domain

Worcester Polytechnic Institute

A near-field scanning array kneeling human

- 1x8 dipole array
- Homogeneous body
- Near-field scanning array task: ~2 $\times 2 \lambda \times 2 \lambda$

Worcester Polytechnic Institute

Continued work

Several tasks are either planned or currently being worked:

- Scanning of body phantoms with organs
- Coupling of analytical, experimental and numerical results
- Speeding up the code/increasing accuracy
- Implementing parallel MATLAB engine
- Potential construction of antennas with a focusing element designed for human body near-field scanning
- $1^{\text {st }}$ Workshop on Emerging Body Area Network Technology and Applications (June 19-20, 2011 at WPI, Worcester, MA)
http://www.cwins.wpi.edu/workshop11/index.htm|
http://www.nist.gov/healthcare/emerging/body-network-workshop.cfm

Acknowledgments

The authors would like to thank:

- Mr. Jeremy Carson of the U.S. Army Natick Soldier Research, Development \& Engineering Center for his assistance in use of the 3D body scanner and his invaluable advice on manipulation of the resulting data sets
- Mr. Luigi Giaccari for access to and use of his MATLAB scripts InPolyedron.m and MyRobustCrust.m. These are both essential pieces to the generation of our custom FDTD meshes

This work was partially supported by NIST grant "RF propagation, measurement, and modeling for wireless body area networking" (PI - K. Pahlavan, ECE, WPI)

Appendix A: Effect of body proximity on a small dipole

Establish input impedance base - one element

Impedance results

The 'human body' under consideration is modeled as a $20 \mathrm{~cm} \times 40 \mathrm{~cm} \times 90$ cm block of homogeneous material. Simulation of two dielectric constants is underway:

- $\varepsilon_{r}=40$
- $\varepsilon_{r}=50$

Worcester Polytechnic Institute

ANSOFT antenna model

A model of a cylindrical dipole antenna has been inserted into the center of a block representing the human body. The dipole has the following parameters:

- Radius $=5 \mathrm{~mm}$
- Feed = $5 \mathrm{~mm} \times 3 \mathrm{~mm}$
- Total varies from 15 mm to 100 mm

Reflection coefficient

When $\varepsilon_{r}=40$, the reflection coefficients across the parametric length study are shown above. These show several candidates with suitable characteristics across the frequency band of interest.

Reflection coefficient

When $\varepsilon_{r}=50$, the reflection coefficients for the parametric length study are shown above. These are slightly higher than in the case of $\varepsilon_{r}=40$ but show the same general behavior.

Electric fields

As one looks at the body from the top, concentric Electric Field rings become apparent and radiate out from the antenna source. Hot spots appear at various locations.

