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Arbitrarily-Shaped Body

« Arbitrary shape.
« Arbitrary material composition.

« Cavities, cables, and apertures.

Single or multiple bodies.

Intersecting surfaces.

Periodic structures.

Finite structures.



Numerical Solution Procedure

. Describe Geometry to the computer- Planar

triangular patch modeling.

. Transform the Mathematical Equations into Matrix

equation via Method of Moments.
. Solve the Matrix equation.

. Post-processing.



Triangulated Models
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Method of Moments Solution
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Electrostatic Problems

Applications: Elcctrostatic Discharge (ESD)

Mecthod: Calculate ('.ha,rgc digtribution
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« Charge calculation — IEEE Trans. A&P 1979

* Electrostatic Discharge on Multi-Conductor
Transmission Lines — IEEE Trans. MTT 1984

* Power-line hazard analysis - IEEE Trans. MTT
1985

» Characterization of Cross talk problem in VLSI
design - IEEE Trans. MTT 1998

 Nuclear EMP Studies



Electrodynamics Problems

(ESC ] HSC)
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Arbitrary PEC Body excited by a Plane wave

EFIE MFIE
E!% =0 for re S J=a,x H" for re 8§
= B+ By =0 = J =a,x (H" + H")

= [jwA+ V], =E/ for re€§ >J—-a,xH*=a,xH™ for r€ 8



Method of Moments Solution Procedure

Approximate the unknown
current density using RWG
(Rao-Wilton-Glisson)

functions. Face
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Method of Moments Solution Procedure

*Transform the operator equation into matrix
equation using testing functions - Also RWG
functions.

*Solve the matrix equation.

Testing Functions



Example of the currents on an Aircraft at 300 MHz
with 2900 unknowns

s

s



Base Station Antenna Design

! / * 1 element placed at the
center of the cylindrical

ground plane.

16 elements distributed
uniformly (45 ° apart ) on
the circumference of 2
concentric rings.

 Two driver elements shown
with red ports.

. * 17 elements in all.
Figure: Geometry of the array antenna



Geometry of antenna

9 elements

* Driver elements are
present in the inner
| circle and they are 135
| apart.

| * The elements in inner
circle act as directors.

 Elements in the outer
circle act as reflectors.

i * Hollow cylinder acts as
Figure : Geometry of the antenna with only essential elements. g round P lane.




Far Field Gain in Horizontal Plane

Angle (Phi, Degrees)

Elements 1 and 4 are excited

8,16,17,12,9, 5, 13 are grounded

and the remaining elements are removed from the system.
(open circuited)
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Fabrication of Antenna

 The antenna was
fabricated to operate at
2GHz frequency.

« Copper sheets and rods of
optimized dimensions
were used for
construction.

* A power splitter was
designed to split the power  Figure: Top view of the fabricated antenna
equally between two driver
elements.



Fabricated antenna

hc= 1.1811 inches (Height of the
cylindrical ground plane)

rc =3.3070 inches (Radius of the
cylindrical ground plane)

hi =1.5029 inches (Height of
elements on inner circle)

ho = 4.7238 inches (Height of
elements on outer circle)

horg =4.7096 inches (Height of
element at origin)

ri = 1.5750 inches (Radius of inner
circle)

ro = 3.1500 inches (Radius of outer
circle)

rr = 0.0625 inches (Radius of
antenna elements)

Figure: Side view of fabricated antenna
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Figure: The simulated and measured radiation patterns of antenna
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Surface Formulation of Integral
Equations For a Dielectric Body




External Equivalent Problem
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Internal Equivalent Problem
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Four Governing Equations

[E5(J;) + E{(M,) + E™] = 0 for re S

tan

[H$(J,) + H{(M)+ H™], = 0 for r€S

tan

(E5(Js) + E5(M)),,,, = 0 for r€ S
(H5(Js) + H3(M)),,, = 0 for r€ S

Where
12(ds) = jwAi12+ V@i
12(Ms) = Zan X % +V X Fi
12(Ms) = jwFi12+VV¥s

: Js
3,2(‘]8) = Fan X 9 + V X A1,2



SIE Formulations

« PMCHWT Formulation
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PMCHWT Formulation

[E$ + ES)y,, = —Ei, for reS
[H$ + Hj),,,, = —H& for €8
Resulting in
[jw (A1 4+ A2) + V(@1 + ®2) + V x (F1+ Fo)),,, = E™
[V X (A1 + A2) + jw (F1+ F2) + V (¥1 + ¥),,., = Hix

@ Expansion Procedure — Use RWG Functions for both J, and M.
@ Testing Procedure — Use RWG Functions - similar to PEC Case.
€ Most Efficient Solution — Acceptable accuracy.

@ However, the same procedure fails for other formulations —
Why?



EFIE Formulation

—E™ for re S

[E1(Js) + E1(M,),

tan tan
E5(Js) + E5(My)),,, = 0 for €S
Resulting in
j(.UAl + V(I)l + a, X 7 + V X F1 = ;Z;
J tan
~ MS -
ijg+V<D2—an,x7+VxF2 = (
L J tan

@ Expansion Procedure — Let us assume RWG Functions for both J, and M.,
@ Testing Procedure — Use RWG Functions

€ What happens?



RWG Testing functions

Zp(Js) Zp(Ms)
Z5(Js) Zp(Ms)
o Z}(J,) and Z%(J,) are well-conditioned Submatrices.

o Z1,(M,) and Z%(M) are poorly-conditioned Submatrices.

Overall Result — An 1naccurate solution



a,XRWG Testing

Zp(Js) Zp(M,)
Z3(Js) Zy(My)

o Z(J,) and Z%(J,) are poorly conditioned Submatrices.

o Z},(M,) and Z%(M,) are well-conditioned Submatrices.

Again, inaccurate Solution



RWG + a,xRWG Testing

o Z5(J,) and Z%(J,) are well conditioned Submatrices.

o Z1,(M,) and Z%(M,) are well-conditioned Submatrices.

Or

o Z1(J,) and Z%(J,) are poorly-conditioned Submatrices.

e Z, (M) and Z%(M ) are poorly-conditioned Submatrices.



= The Problem would be true for all other formulations —
MFIE, CFIE, Muller formulations.

*The Problem can happen for other situations — Apertures
in a body and composite surfaces.

»Far-fields may be acceptable with dense grids.

»However, Near-fields are questionable.



Experimentation with Expansion Schemes

=Use Two separate functions to expand J, and M..
=Preferably, these two functions should be
spatially orthogonal to each other.

=Use same functions (or some approximations) for

testing.



Method # 1

= Use RWG functions for J,
= Use a,xRWG for Mg

= Use RWG functions for Testing.
= The EFIE Solution for this case is straightforward.

- Ms
jU.)Al + V@l + a, X 7

- MS
j(A.)AQ -+ V(I)Q — QAn X T

Zp(Js) Zg
ZE(Js) Z%

+VXF1

+VXF2

(M)
(M)

Jtan

Jtan

— Einc

tan



« For MFIE Solution, one requires to compute the
divergence of M,

« Use a,XxRWG functions for Testing.

J .
[—anX§—VXA1+jLUF1+V‘Ifl = %gfb

Jd tan

J
|:anX§—VXA2+jLUF2+V\I}2 = 0

Jd tan




=Note that a,xRWG functions have discontinuous
derivatives.

=But can be handled in the following way.

FIGURE 6. Magnetlc charge patches assoclated with the nth edge.



Another Scheme (Method #?2)

=Use the conventional triangulation scheme RWG

functions to expand the electric current J<

=Develop a dual grid and polygonal basis functions

to expand M..



Dual Grid

A sphere surface modeled by triangular and corresponding polygonal
patches.






Mathematical Representation

Ln
> C@Afe(r) for r € PF
=0

0 otherwise






Yet Another Scheme (Method # 3)

nth edge (source)

Pulse-Like Functions
on Triangle Pair
nxg, =Ff

N = outward unit normal

fr=f

n n

= ‘gn‘ = basis function support

Jp=1,(f + ;)
Mn = ]N+ngn



Charge Patches for J

Let N, be the total number of triangles, and let

Np
_ o) 1, rel;
Qs = Zasz Where PFi(r) = z ,
=1 0, otherwise
/ gsds = Vs . i ds
b T e bis biy
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Testing Vectors
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An Alternate Formulation

« Consider the following Composite Body Problem

S

ce

*On surface S_ ---------- Only J_..
*On surface S ,----------- Jye @and M.
*On surface S ------------ Only J,..

Use PMCHWT Formulation.

*OK for far-field calculations.
*For near-field quantities, extra work is needed to obtain
physical currents from equivalent currents.



Some Observations

Dielectric Body Problem is more complicated than
PEC problem.

If RWG functions are used for expansion and testing,
one must be very careful while applying the
numerical procedures.

Ideally, it is recommended to use two spatially
orthogonal functions in the numerical scheme.

It is possible to get acceptable far-field quantities
using only RWG functions.

« While using software packages, one needs to know
how the dielectric materials are treated.



Water meter antenna

Radiating Element

Feed

Radiat i-o-n Pattern



Time Domain Problems

« Here we solve the scattering problem directly in
time-domain - Useful for Impulse radar, Wideband

solutions, and signature studies.

« No matrix inversion - solution is obtained

iteratively.

Time Domain Electromagnetics
Academic Press, 2001




Consider the following problem:

Az

Scattered Field

Incident
Pulse

Figure 1: Transient pulse incident upon an arbitrarily shaped
body.



Direct Time Domain Solutions are better suited to:
e Short-pulse radar systems.
e EMP studies.
e Provide better visualization.

e Provides opportunity to observe and interpret scattering

behavior.

e Provides broadband information.



Incident Field
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where

Time Domain EFIE
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Final Equation

[Kmm - l—(P + o5 M m(t5) =
ﬁ(p“’ + 05 ) - (A E' (rm, tj-1)

—lﬂ cF+ pso) [%(rm, A(rm,ti— 1]

Hm(AL)[@(rSh, ti1) — B(rey, tio1)].

Lastly, we can write Eq. (44) in matrix form as

(][ I(25)] = [F(¢;)] + [B]L(tr)].



Conclusions

« RWG functions have been used for a variety of problems

in numerical electromagnetic problems.
« Also used in other areas - Acoustic scattering.

 New improvements include: developing faster solutions
(FMM), adaptive basis functions to generate sparse
moment matrix (Killian and Rao, |IEEE Transactions on
A&P, 2011), Domain Decomposition to handle large
problems, and Adaptive Cross Approximation (Mercury
MoM).



New domain Decomposition Method

® Domain Decomposition — Disjoint groups of sub-domain functions
® Functions in a group are geometrically close to one another

® Each function belongs to one and only one group.



* Decouple a given group from other groups- Can be accomplished

by generating new set of basis functions.

* It is possible to solve each group separately and obtain the total

solution.
Near-Field Region

Far-Field
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3D Results - Finite Planar Array

* Finite Periodic Array
* EFIE
* 50 x 50 grid of

0.5 lambda x 0.5 lambda plates :

* 64 unknowns per plate

* 0.75 lambda spacing

* 160,000 total unknowns

* Null fields produced
on adjacent plates
* Redundant coetficients —
» Eth = 120pi; Ephi = 0 0.75 wavelengths

* Theta = 45 deg Phi =0 deg



3D Results - Planar Array

1 iteration = 0.288 average error per term
« 2 iterations = 0.122 average error per term

« ~19.5 hours wall clock time with 8 CPUs (includes time
for RCS calculation on single CPU)

« Matrix approximations can be used for speedup
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3D Results - Sphere

« 5 lambda radius

 CFIE

« 92550 unknowns

* 314 Groups — each roughly
1 lambda”2 in surface area

 Null fields produced on groups
within 2 lambda radius (typically
around 3000 points)

« ~ 2.5 GB storage

« Eth = 120pi; Ephi=0

* Theta = 45 deg Phi = 0 deg
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3D Results - Sphere

1 iteration = 0.096 average error per term

» 2 iterations = 0.014 average error per term
« ~26 hours wall clock time with 8 CPUs (includes time

for RCS calculation on single CPU)

» Matrix approximations can be used for speedup
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3D Results - Square Plate

12 A x 12 A square plate

EFIE
42883 unknowns

144 Groups — each roughly

1 A2 in surface area

Null fields produced on groups &
within 2 lambda radius (typically ===
around 2800 points) S
~ 185 MB storage

Eth = 120pi; Ephi=0
Theta = 45 deg Phi = 0 deg




RCS (dB)
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3D Results - Square Plate

1 iteration = 0.612 average error per term
« 2 iterations = 0.232 average error per term
e ~ 2 hours 45 mins wall clock time with 8 CPUs

(includes time for RCS calculation on single CPU)
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3D Results - Aircraft

* French Mirage
* ~ 160,000 unknowns
» Patches represent groups.
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RCS (dB)

3D Results - Aircraft

1 iteration = 0.224 average error per term
« 2 iterations = 0.218 average error per term

« ~ 5 days 7 hours wall clock time with 8 CPUs
(includes time for RCS calculation on single CPU)
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