

## Electromagnetic Scattering from Arbitrary Bodies Using Rao-Wilton-Glisson (RWG) Functions

Sadasiva M. Rao Code # 5314 Radar Division Naval Research Laboratory Washington D.C. 20375 (USA) Arbitrarily-Shaped Body

- Arbitrary shape.
- Arbitrary material composition.
- Cavities, cables, and apertures.
- Single or multiple bodies.
- Intersecting surfaces.
- Periodic structures.
- Finite structures.



- 1. Describe Geometry to the computer- Planar triangular patch modeling.
- 2. Transform the Mathematical Equations into Matrix equation via Method of Moments.
- 3. Solve the Matrix equation.
- 4. Post-processing.





## Method of Moments Solution

$$AX = Y \tag{4}$$

$$X = \sum_{i=1}^{N} \alpha_i p_i \tag{5}$$

$$\sum_{i=1}^{N} \alpha_i A p_i = Y \tag{6}$$

$$\sum_{i=1}^{N} \alpha_i < q_j, Ap_i > = < q_j, Y > \qquad j = 1, 2, \cdots, N \quad (7)$$

$$\Rightarrow \boldsymbol{Z}\boldsymbol{X} = \boldsymbol{Y} \tag{8}$$



$$\int_{S} \frac{q_{s}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dS' = 4\pi\epsilon_{o}V_{o} \quad \mathbf{r}\epsilon S$$

$$\implies \sum_{i=1}^{N} Q_{i} \int_{T_{i}} \frac{dS'}{\left|\mathbf{r}_{j}^{\mathbf{c}} - \mathbf{r}'\right|} = 4\pi\epsilon_{o}V_{o_{j}}$$

$$j = 1, 2, \cdots, N$$

$$\implies [Z] [Q] = [V]$$



- Charge calculation IEEE Trans. A&P 1979
- Electrostatic Discharge on Multi-Conductor Transmission Lines – IEEE Trans. MTT 1984
- Power-line hazard analysis IEEE Trans. MTT 1985
- Characterization of Cross talk problem in VLSI design IEEE Trans. MTT 1998
- Nuclear EMP Studies



## Method of Moments Solution Procedure

Approximate the unknown current density using RWG (Rao-Wilton-Glisson) functions.

$$\mathbf{J} = \sum I_n \mathbf{f}_n$$
$$\mathbf{f}_n = \begin{cases} \frac{l_n}{2\mathbf{A}_n^+} \rho_n^+ & \mathbf{r} \in \mathbf{T}_n^+ \\ \frac{l_n}{2\mathbf{A}_n^-} \rho_n^- & \mathbf{r} \in \mathbf{T}_n^- \\ \mathbf{0} & \text{otherwise} \end{cases}$$



```
Triangulated Body
```



**RWG** Basis functions

Method of Moments Solution Procedure

•Transform the operator equation into matrix equation using testing functions – Also RWG functions.

•Solve the matrix equation.



**Testing Functions** 



## Example of the currents on an Aircraft at 300 MHz with 2900 unknowns



## **Base Station Antenna Design**



Figure : Geometry of the array antenna

- 1 element placed at the center of the cylindrical ground plane.
- 16 elements distributed uniformly (45 ° apart ) on the circumference of 2 concentric rings.
- Two driver elements shown with red ports.
- 17 elements in all.

## Geometry of antenna



Figure : Geometry of the antenna with only essential elements.

- 9 elements
- Driver elements are present in the inner circle and they are 135° apart.
- The elements in inner circle act as directors.
- Elements in the outer circle act as reflectors.
- Hollow cylinder acts as ground plane.



Far Field Gain in Horizontal Plane



Angle (Phi, Degrees)

Elements 1 and 4 are excited 8, 16, 17, 12, 9, 5, 13 are grounded and the remaining elements are removed from the system. (open circuited)



## Far Field Gain in Horizontal Plane











### Far Field Gain in Horizontal Plane









## Fabrication of Antenna

- The antenna was fabricated to operate at 2GHz frequency.
- Copper sheets and rods of optimized dimensions were used for construction.
- A power splitter was designed to split the power equally between two driver elements.



Figure: Top view of the fabricated antenna



## Fabricated antenna

- hc= 1.1811 inches (Height of the cylindrical ground plane)
- rc =3.3070 inches (Radius of the cylindrical ground plane)
- hi =1.5029 inches (Height of elements on inner circle)
- ho = 4.7238 inches (Height of elements on outer circle)
- horg =4.7096 inches (Height of element at origin)
- ri = 1.5750 inches (Radius of inner circle)
- ro = 3.1500 inches (Radius of outer circle)
- rr = 0.0625 inches (Radius of antenna elements)



Figure: Side view of fabricated antenna

## **Comparison of the Radiation Patterns**



Figure: The simulated and measured radiation patterns of antenna



- FERM Lincoln Labs This code is classified
- PATCH Sandia National Labs This code is classified
- IE3D Commercial Code
- FEKO Commercial Code
- CARLOS3D McDonnell Douglas

## Surface Formulation of Integral Equations For a Dielectric Body



# External Equivalent Problem Einc, Hinc $E_{1,H_1}^{S}$ **n**<sub>1</sub> $\boldsymbol{\epsilon}_{_{\!1}}$ , $\boldsymbol{\mu}_{_{\!1}}$ S $\boldsymbol{\epsilon}_{_{\!1}}$ , $\boldsymbol{\mu}_{_{\!1}}$ (0,0) Ms $J_{s}$ equivalent surface



## Four Governing Equations

$$\begin{bmatrix} \boldsymbol{E}_{1}^{s}(\boldsymbol{J}_{s}) + \boldsymbol{E}_{1}^{s}(\boldsymbol{M}_{s}) + \boldsymbol{E}^{inc} \end{bmatrix}_{tan} = 0 \text{ for } \boldsymbol{r} \in S$$
$$\begin{bmatrix} \boldsymbol{H}_{1}^{s}(\boldsymbol{J}_{s}) + \boldsymbol{H}_{1}^{s}(\boldsymbol{M}_{s}) + \boldsymbol{H}^{inc} \end{bmatrix}_{tan} = 0 \text{ for } \boldsymbol{r} \in S$$

 $\begin{bmatrix} \boldsymbol{E}_2^s(\boldsymbol{J}_s) + \boldsymbol{E}_2^s(\boldsymbol{M}_s) \end{bmatrix}_{tan} = 0 \quad \text{for} \quad \boldsymbol{r} \in S \\ [\boldsymbol{H}_2^s(\boldsymbol{J}_s) + \boldsymbol{H}_2^s(\boldsymbol{M}_s)]_{tan} = 0 \quad \text{for} \quad \boldsymbol{r} \in S$ 

Where

$$egin{array}{rll} m{E}_{1,2}^s(m{J}_s) &=& j\omegam{A}_{1,2} + 
abla \Phi_{1,2} \ m{E}_{1,2}^s(m{M}_s) &=& \pmm{a}_n imes rac{m{M}_s}{2} + 
abla imes m{F}_{1,2} \ m{H}_{1,2}^s(m{M}_s) &=& j\omegam{F}_{1,2} + 
abla \Psi_{1,2} \ m{H}_{1,2}^s(m{J}_s) &=& \mpm{a}_n imes rac{m{J}_s}{2} + 
abla imes m{A}_{1,2} \end{array}$$



## **SIE Formulations**

- **PMCHWT** Formulation
- EFIE Formulation
- MFIE Formulation
- CFIE Formulation
- Muller Formulation



## **PMCHWT** Formulation

 $[\boldsymbol{E}_1^s + \boldsymbol{E}_2^s]_{tan} = -\boldsymbol{E}_{tan}^{inc} \text{ for } \boldsymbol{r} \in S$  $[\boldsymbol{H}_1^s + \boldsymbol{H}_2^s]_{tan} = -\boldsymbol{H}_{tan}^{inc} \text{ for } \boldsymbol{r} \in S$ 

Resulting in

 $[j\omega (\boldsymbol{A}_{1} + \boldsymbol{A}_{2}) + \nabla (\boldsymbol{\Phi}_{1} + \boldsymbol{\Phi}_{2}) + \nabla \times (\boldsymbol{F}_{1} + \boldsymbol{F}_{2})]_{tan} = \boldsymbol{E}_{tan}^{inc}$  $[-\nabla \times (\boldsymbol{A}_{1} + \boldsymbol{A}_{2}) + j\omega (\boldsymbol{F}_{1} + \boldsymbol{F}_{2}) + \nabla (\Psi_{1} + \Psi_{2})]_{tan} = \boldsymbol{H}_{tan}^{inc}$ 

Expansion Procedure – Use RWG Functions for both J<sub>s</sub> and M<sub>s</sub>.
Testing Procedure – Use RWG Functions - similar to PEC Case.
Most Efficient Solution – Acceptable accuracy.
However, the same procedure fails for other formulations – Why?

## **EFIE Formulation**

$$\begin{split} [\boldsymbol{E}_1^s(\boldsymbol{J}_s) + \boldsymbol{E}_1^s(\boldsymbol{M}_s)]_{tan} &= -\boldsymbol{E}_{tan}^{inc} \quad \text{for} \quad \boldsymbol{r} \in S \\ [\boldsymbol{E}_2^s(\boldsymbol{J}_s) + \boldsymbol{E}_2^s(\boldsymbol{M}_s)]_{tan} &= 0 \quad \text{for} \quad \boldsymbol{r} \in S \end{split}$$

Resulting in

$$egin{array}{lll} \left[ j\omegam{A}_1 + 
abla \Phi_1 + m{a}_n imes rac{m{M}_s}{2} + 
abla imes m{F}_1 
ight]_{tan} &= m{E}_{tan}^{inc} \ \left[ j\omegam{A}_2 + 
abla \Phi_2 - m{a}_n imes rac{m{M}_s}{2} + 
abla imes m{F}_2 
ight]_{tan} &= m{0} \end{array}$$

Expansion Procedure – Let us assume RWG Functions for both J<sub>s</sub> and M<sub>s</sub>.
 Testing Procedure – Use RWG Functions

♦ What happens?

• 
$$Z_E^1(J_s)$$
 and  $Z_E^2(J_s)$  are well-conditioned Submatrices.

•  $Z_E^1(M_s)$  and  $Z_E^2(M_s)$  are poorly-conditioned Submatrices.

## Overall Result – An inaccurate solution



- $Z_E^1(J_s)$  and  $Z_E^2(J_s)$  are poorly conditioned Submatrices.
- $Z_E^1(M_s)$  and  $Z_E^2(M_s)$  are well-conditioned Submatrices.

Again, inaccurate Solution

# RWG + $a_n$ xRWG Testing

- $Z_E^1(J_s)$  and  $Z_E^2(J_s)$  are well conditioned Submatrices.
- $Z_E^1(M_s)$  and  $Z_E^2(M_s)$  are well-conditioned Submatrices.

## Or

- $Z_E^1(J_s)$  and  $Z_E^2(J_s)$  are poorly-conditioned Submatrices.
- $Z_E^1(M_s)$  and  $Z_E^2(M_s)$  are poorly-conditioned Submatrices.



•The Problem would be true for all other formulations – MFIE, CFIE, Muller formulations.

- •The Problem can happen for other situations Apertures in a body and composite surfaces.
- •Far-fields may be acceptable with dense grids.
- •However, Near-fields are questionable.

Experimentation with Expansion Schemes

- •Use Two separate functions to expand J<sub>s</sub> and M<sub>s</sub>.
- Preferably, these two functions should be
- spatially orthogonal to each other.
- Use same functions (or some approximations) for testing.



Method # 1

- Use RWG functions for  $J_s$  .
- Use a<sub>n</sub>xRWG for M<sub>s</sub>.
- Use RWG functions for Testing.
- The EFIE Solution for this case is straightforward.

$$\begin{bmatrix} j\omega A_1 + \nabla \Phi_1 + a_n \times \frac{M_s}{2} + \nabla \times F_1 \end{bmatrix}_{tan} = E_{tan}^{inc} \\ \begin{bmatrix} j\omega A_2 + \nabla \Phi_2 - a_n \times \frac{M_s}{2} + \nabla \times F_2 \end{bmatrix}_{tan} = 0 \\ \begin{pmatrix} Z_E^1(J_s) & Z_E^1(M_s) \\ Z_E^2(J_s) & Z_E^2(M_s) \end{pmatrix}$$



- For MFIE Solution, one requires to compute the divergence of  $\rm M_{\rm s.}$
- Use a<sub>n</sub>xRWG functions for Testing.

$$\begin{bmatrix} -\boldsymbol{a}_n \times \frac{\boldsymbol{J}}{2} - \nabla \times \boldsymbol{A}_1 + j\omega \boldsymbol{F}_1 + \nabla \Psi_1 \end{bmatrix}_{tan} = \boldsymbol{H}_{tan}^{inc}$$
$$\begin{bmatrix} \boldsymbol{a}_n \times \frac{\boldsymbol{J}}{2} - \nabla \times \boldsymbol{A}_2 + j\omega \boldsymbol{F}_2 + \nabla \Psi_2 \end{bmatrix}_{tan} = 0$$



- •Note that a<sub>n</sub>xRWG functions have discontinuous derivatives.
- •But can be handled in the following way.



FIGURE 6. Magnetic charge patches associated with the nth edge.



## Another Scheme (Method #2)

Use the conventional triangulation scheme RWG functions to expand the electric current J<sub>S.</sub>
Develop a dual grid and polygonal basis functions to expand M<sub>s</sub>.



A sphere surface modeled by triangular and corresponding polygon patches.



# Mathematical Representation

SEARCH

$$\Lambda_n(\boldsymbol{r}) = \left\{ egin{array}{c} L_n^{\pm} \ \sum\limits_{\ell=0}^{L} C_{n\ell}^{\pm} \Lambda_{n\ell}^{\pm}(\boldsymbol{r}) & ext{for } \boldsymbol{r} \in P_n^{\pm} \ 0 & ext{otherwise} \end{array} 
ight.$$



## <u>Current flowing in the Polygon Pair</u>





Pulse-Like Functions on Triangle Pair

$$\hat{\boldsymbol{n}} \times \boldsymbol{g}_n = \boldsymbol{f}_n$$
  
 $\hat{\boldsymbol{n}}$  = outward unit normal

$$\left|\boldsymbol{f_n^+}\right| = \left|\boldsymbol{f_n^-}\right| = \left|\boldsymbol{g_n}\right| = 1$$



$$J_n = I_n \left( f_n^+ + f_n^- \right)$$
$$M_n = I_{N+n} g_n$$

Charge Patches for J

Let  $N_p$  be the total number of triangles, and let

$$q_{s} = \sum_{i=1}^{N_{p}} \alpha_{i} P_{i} \quad \text{Where} \quad P_{i}(r) = \begin{cases} 1, & r \in T_{i} \\ 0, & \text{otherwise} \end{cases}$$
$$\int_{T_{i}} q_{s} ds = \int_{T_{i}} \frac{\nabla_{s} \bullet J}{-j\omega} ds \\ = \frac{j}{\omega} \oint_{C_{i}} J \bullet dl \\ = \frac{j}{\omega} [I_{i_{1}}\ell_{i_{1}} + I_{i_{2}}\ell_{i_{2}} + I_{i_{3}}\ell_{i_{3}}] = \alpha_{i}A_{i} \end{cases} \overset{\ell_{i_{1}}}{\ell_{i_{1}}}$$
$$\alpha_{i} = \frac{j}{\omega} \left[ \frac{I_{i_{1}}\ell_{i_{1}} + I_{i_{2}}\ell_{i_{2}} + I_{i_{3}}\ell_{i_{3}}}{A_{i}} \right]$$

Charge Patches for M

SEARCH

Let 
$$q_S = \sum_{i=1}^{N_n} \alpha_i P_i$$
  $P_i(\mathbf{r}) = \begin{cases} 1, \mathbf{r} \in S_i \\ 0, \text{ otherwise.} \end{cases}$   

$$\int_{S_i} q_S \, dS = \int_{S_i} \frac{\nabla_s \bullet \mathbf{J}}{-j\omega} \, dS$$

$$= \frac{j}{\omega} \oint_{C_i} \mathbf{J} \bullet n_\ell \, d\ell$$

$$= \frac{j}{\omega} \sum_{j=1}^{E_K} I_{ij} [\ell_{ij} \bullet (\mathbf{r}_{ij}^{c+} \times n_{ij}^+ + (\mathbf{r}_{ij}^{c-} \times n_{ij}^-)] \qquad \mathbf{i}^{\mathbf{th}} \mathbf{Node}$$

$$\alpha_i = \frac{j}{\omega A_{Si}} \sum_{j=1}^{E_K} I_{ij} [\boldsymbol{\ell}_{ij} \bullet (\boldsymbol{r}_{ij}^{c+} \times n_{ij}^+ + (\boldsymbol{r}_{ij}^{c-} \times n_{ij}^-)]$$



An Alternate Formulation

- Consider the following Composite Body Problem
  - •On surface S<sub>ce</sub>----- Only J<sub>ce</sub>.
  - •On surface  $S_{de}$ -----J<sub>de</sub> and  $M_{de}$ .
  - •On surface S<sub>dc</sub>-----Only J<sub>dc</sub>.
  - •Use PMCHWT Formulation.



- •OK for far-field calculations.
- •For near-field quantities, extra work is needed to obtain physical currents from equivalent currents.



### Some Observations

- Dielectric Body Problem is more complicated than PEC problem.
- If RWG functions are used for expansion and testing, one must be very careful while applying the numerical procedures.
- Ideally, it is recommended to use two spatially orthogonal functions in the numerical scheme.
- It is possible to get acceptable far-field quantities using only RWG functions.
- While using software packages, one needs to know how the dielectric materials are treated.



### Water meter antenna



**Radiating Element** 



(a)

Feed

Insulator

(b)



**Radiation Pattern** 



## Time Domain Problems

- Here we solve the scattering problem directly in time-domain – Useful for Impulse radar, Wideband solutions, and signature studies.
- No matrix inversion solution is obtained iteratively.

Time Domain Electromagnetics Academic Press, 2001



#### Consider the following problem:



Figure 1: Transient pulse incident upon an arbitrarily shaped body.

Direct Time Domain Solutions are better suited to:

- Short-pulse radar systems.
- EMP studies.
- Provide better visualization.
- Provides opportunity to observe and interpret scattering behavior.
- Provides broadband information.



$$\boldsymbol{E}^{i}(\boldsymbol{r},t) = \boldsymbol{E}_{o} rac{4}{T\sqrt{\pi}} \mathrm{e}^{-\gamma^{2}}$$

.

where

$$\gamma = rac{4}{T}(ct - ct_o - oldsymbol{r} \cdot oldsymbol{a}_k),$$

<u>Time Domain EFIE</u>

$$\left[\frac{\partial \boldsymbol{A}(\boldsymbol{r},t)}{\partial t} + \nabla \Phi(\boldsymbol{r},t)\right]_{tan} = \boldsymbol{E}_{tan}^{i}(\boldsymbol{r},t)$$

where

FARCH

$$egin{array}{rll} m{A}(m{r},t) &=& \mu \int_{S} rac{m{J}(m{r}',t-rac{R}{c})}{4\pi R} \, dS' \; , \ \Phi(m{r},t) &=& rac{1}{\epsilon} \int_{S} rac{q_s(m{r}',t-rac{R}{c})}{4\pi R} \, dS' \; , \end{array}$$



### **Final Equation**

$$egin{aligned} & [m{\kappa}_{mm} \cdot rac{l_m}{2} (m{
ho}_m^{c+} + m{
ho}_m^{c-})] I_m(t_j) = \ & rac{l_m}{2} (m{
ho}_m^{c+} + m{
ho}_m^{c-}) \cdot (\Delta t) m{E}^i(m{r}_m, t_{j-1}) \ & -rac{l_m}{2} (m{
ho}_m^{c+} + m{
ho}_m^{c-}) \cdot \left[ m{A}(m{r}_m, t_j) - m{A}(m{r}_m, t_{j-1}) 
ight] \ & + l_m (\Delta t) [\Phi(m{r}_m^{c+}, t_{j-1}) - \Phi(m{r}_m^{c-}, t_{j-1})]. \end{aligned}$$

Lastly, we can write Eq. (44) in matrix form as

 $[\boldsymbol{\alpha}][\boldsymbol{I}(t_j)] = [\boldsymbol{F}(t_j)] + [\boldsymbol{\beta}][\boldsymbol{I}(t_R)].$ 



### **Conclusions**

- RWG functions have been used for a variety of problems in numerical electromagnetic problems.
- Also used in other areas Acoustic scattering.
- New improvements include: developing faster solutions (FMM), adaptive basis functions to generate sparse moment matrix (Killian and Rao, IEEE Transactions on A&P, 2011), Domain Decomposition to handle large problems, and Adaptive Cross Approximation (Mercury MoM).



## New domain Decomposition Method

- Domain Decomposition Disjoint groups of sub-domain functions
- Functions in a group are geometrically close to one another
- Each function belongs to one and only one group.





- Decouple a given group from other groups- Can be accomplished by generating new set of basis functions.
- It is possible to solve each group separately and obtain the total solution.





## Example – Two 2D strips



$$Z = \begin{bmatrix} Z_{1,1} & Z_{1,2} & Z_{1,3} \\ Z_{2,1} & Z_{2,2} & Z_{2,3} \\ Z_{3,1} & Z_{3,2} & Z_{3,3} \end{bmatrix} \begin{bmatrix} Z_{1,4} & Z_{1,5} & Z_{1,6} \\ Z_{2,4} & Z_{2,5} & Z_{2,6} \\ Z_{3,4} & Z_{3,5} & Z_{3,6} \end{bmatrix} \\ \begin{bmatrix} Z_{4,1} & Z_{4,2} & Z_{4,3} \\ Z_{5,1} & Z_{5,2} & Z_{5,3} \\ Z_{6,1} & Z_{6,2} & Z_{6,3} \end{bmatrix} \begin{bmatrix} Z_{4,4} & Z_{4,5} & Z_{4,6} \\ Z_{5,4} & Z_{5,5} & Z_{5,6} \\ Z_{6,4} & Z_{6,5} & Z_{6,6} \end{bmatrix} \end{bmatrix} \\ = \begin{bmatrix} [Z_{G_1G_1}] & [Z_{G_1G_2}] \\ [Z_{G_2G_1}] & [Z_{G_2G_2}] \end{bmatrix}$$

New basis function:

Criteria (g1) :

$$g_{1} = f_{1} + \alpha_{1}f_{4} + \beta_{1}f_{5} + \gamma_{1}f_{6}$$

$$g_{2} = f_{2} + \alpha_{2}f_{4} + \beta_{2}f_{5} + \gamma_{2}f_{6}$$

$$g_{3} = f_{3} + \alpha_{3}f_{4} + \beta_{3}f_{5} + \gamma_{3}f_{6}$$

$$Z_{4,1} + \alpha_1 Z_{4,4} + \beta_1 Z_{4,5} + \gamma_1 Z_{4,6} = 0$$
  

$$Z_{5,1} + \alpha_1 Z_{5,4} + \beta_1 Z_{5,5} + \gamma_1 Z_{5,6} = 0$$
  

$$Z_{6,1} + \alpha_1 Z_{6,4} + \beta_1 Z_{6,5} + \gamma_1 Z_{6,6} = 0$$

$$\begin{bmatrix} \alpha_1 \\ \beta_1 \\ \gamma_1 \end{bmatrix} = -\begin{bmatrix} Z_{4,4} & Z_{4,5} & Z_{4,6} \\ Z_{5,4} & Z_{5,5} & Z_{5,6} \\ Z_{6,4} & Z_{6,5} & Z_{6,6} \end{bmatrix}^{-1} \begin{bmatrix} Z_{4,1} \\ Z_{5,1} \\ Z_{6,1} \end{bmatrix}$$

$$\tilde{Z}_{2,1} = Z_{2,1} + \alpha_1 Z_{2,4} + \beta_1 Z_{2,5} + \gamma_1 Z_{2,6}$$

$$\tilde{Z} = \begin{bmatrix} \tilde{Z}_{G_1 G_1} & 0 \\ 0 & \tilde{Z}_{G_2 G_2} \end{bmatrix}$$

$$R = \begin{bmatrix} 1 & 0 & 0 & \alpha_4 & \alpha_5 & \alpha_6 \\ 0 & 1 & 0 & \beta_4 & \beta_5 & \beta_6 \\ 0 & 0 & 1 & \gamma_4 & \gamma_5 & \gamma_6 \\ \alpha_1 & \alpha_2 & \alpha_3 & 1 & 0 & 0 \\ \beta_1 & \beta_2 & \beta_3 & 0 & 1 & 0 \\ \gamma_1 & \gamma_2 & \gamma_3 & 0 & 0 & 1 \end{bmatrix}$$

Solve for weights

Create new matrix

### 3D Results – Finite Planar Array

- Finite Periodic Array
- EFIE
- 50 x 50 grid of
  0.5 lambda x 0.5 lambda plates
- 64 unknowns per plate
- 0.75 lambda spacing
- 160,000 total unknowns
- Null fields produced on adjacent plates
- Redundant coefficients
- Eth = 120pi; Ephi = 0
- Theta = 45 deg Phi = 0 deg



## 3D Results – Planar Array

- 1 iteration = 0.288 average error per term
- 2 iterations = 0.122 average error per term
- ~19.5 hours wall clock time with 8 CPUs (includes time for RCS calculation on single CPU)
- Matrix approximations can be used for speedup



## 3D Results - Sphere

- 5 lambda radius
- CFIE
- 92550 unknowns
- 314 Groups each roughly
  1 lambda<sup>2</sup> in surface area
- Null fields produced on groups within 2 lambda radius (typically around 3000 points)
- ~ 2.5 GB storage
- Eth = 120pi; Ephi = 0
- Theta = 45 deg Phi = 0 deg





## 3D Results - Sphere

- 1 iteration = 0.096 average error per term
- 2 iterations = 0.014 average error per term
- ~26 hours wall clock time with 8 CPUs (includes time for RCS calculation on single CPU)
- Matrix approximations can be used for speedup





## 3D Results – Square Plate

- 12  $\lambda$  x 12  $\lambda$  square plate
- EFIE
- 42883 unknowns
- 144 Groups each roughly
   1 λ<sup>2</sup> in surface area
- Null fields produced on groups within 2 lambda radius (typically around 2800 points)
- ~ 185 MB storage
- Eth = 120pi; Ephi = 0
- Theta = 45 deg Phi = 0 deg





## 3D Results – Square Plate

- 1 iteration = 0.612 average error per term
- 2 iterations = 0.232 average error per term
- ~ 2 hours 45 mins wall clock time with 8 CPUs (includes time for RCS calculation on single CPU)





## 3D Results – Aircraft

- French Mirage
- ~ 160,000 unknowns
- Patches represent groups.





## 3D Results – Aircraft

- 1 iteration = 0.224 average error per term
- 2 iterations = 0.218 average error per term
- ~ 5 days 7 hours wall clock time with 8 CPUs (includes time for RCS calculation on single CPU)

