
1

Page 1

© 2003 by Carnegie Mellon University page 1

Software Quality Attributes and
Architecture Tradeoffs

Mario R. Barbacci

Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA 15213
Sponsored by the U.S. Department of Defense
Copyright 2003 by Carnegie Mellon University

2

Page 2

© 2003 by Carnegie Mellon University page 2

Seminar Objective

To describe a variety of software quality
attributes (e.g., modifiability, security,
performance, availability) and methods to
analyze a software architecture’s fitness with
respect to multiple quality attribute
requirements.

3

Page 3

© 2003 by Carnegie Mellon University page 3

Software Product Characteristics

There is a triad of user oriented product
characteristics:

• quality
• cost
• schedule

“Software quality is the degree to which
software possesses a desired combination of
attributes.”

[IEEE Std. 1061]

4

Page 4

© 2003 by Carnegie Mellon University page 4

Effect of Quality on Cost and
Schedule - 1
Cost and schedule can be predicted and
controlled by mature organizational
processes.

However, process maturity does not
translate automatically into product quality.

Poor quality eventually affects cost and
schedule because software requires tuning,
recoding, or even redesign to meet original
requirements.

If the technology is lacking, even a mature organization will have difficulty
producing products with predictable performance, dependability, or other
attributes.

For less mature organizations, the situation is even worse:

“Software Quality Assurance is the least frequently satisfied level 2
KPA among organizations assessed at level 1”,

From Process Maturity Profile of the Software Community 2001 Year
End Update, http://www.sei.cmu.edu/sema/profile.html

NOTE: The CMM Software Quality Assurance Key Process Area (KPA)
includes both process and product quality assurance.

Quality requires mature technology to predict and control attributes

5

Page 5

© 2003 by Carnegie Mellon University page 5

Effect of Quality on Cost and
Schedule - 2

The earlier a defect occurs in the development
process, if not detected, the more it will cost to
repair.
The longer a defect goes undetected the more
it will cost to repair.

[Barry Boehm et al, “Characteristics of Software Quality”, North-Holland,
1978.
Watts Humphrey, “A Discipline for Software Engineering”, Addison Wesley,
1995.]

start tLife-cycle stage

$$$
$$
$

6

Page 6

© 2003 by Carnegie Mellon University page 6

Effect of Quality on Cost and
Schedule - 3

The larger the project, the more likely it will be
late due to quality problems:

Project outcome Project size in function points
<100 100-1K 1K-5K >5K

Cancelled 3% 7% 13% 24%
Late by > 12 months 1% 10% 12% 18%
Late by > six months 9% 24% 35% 37%
Approximately on time 72% 53% 37% 20%
Earlier than expected 15% 6% 3% 1%

[Caspers Jones, Patterns of large software systems: Failure and success,
Computer, Vol. 28, March 1995.]

From C.Jones 95:

“Software management consultants have something in common with
physicians: both are much more likely to be called in when there are serious
problems rather than when everything is fine. Examining large software
systems -- those in excess of 5,000 function points (which is roughly 500,000
source code statements in a procedural programming language such as Cobol
or Fortran) -- that are in trouble is very common for management consultants.
Unfortunately, the systems are usually already late, over budget, and showing
other signs of acute distress before the study begins. The consultant
engagements, therefore, serve to correct the problems and salvage the system
-- if, indeed, salvaging is possible.”

“From a technical point of view, the most common reason for software
disasters is poor quality control. Finding and fixing bugs is the most expensive,
time-consuming aspect of software development, especially for large systems.
Failure to plan for defect prevention and use pretest defect-removal activities,
such as formal inspections, means that when testing does commence, the
project is in such bad shape that testing tends to stretch out indefinitely. In fact,
testing is the phase in which most disasters finally become visible to all
concerned. When testing begins, it is no longer possible to evade the
consequences of careless and inadequate planning, estimating, defect
prevention, or pretest quality control.”

7

Page 7

© 2003 by Carnegie Mellon University page 7

Software Quality Attributes

There are alternative (and somewhat equivalent) lists
of quality attributes. For example:
IEEE Std. 1061 ISO Std. 9126 MITRE Guide to

Total Software Quality Control

Efficiency Functionality Efficiency Integrity

Functionality Reliability Reliability Survivability

Maintainability Usability Usability Correctness

Portability Efficiency Maintainability Verifiability

Reliability Maintainability Expandability Flexibility

Usability Portability Interoperability Portability

Reusability

8

Page 8

© 2003 by Carnegie Mellon University page 8

Quality Factors and Sub-factors

IEEE Std. 1061 subfactors:
Efficiency Portability

• Time economy • Hardware independence
• Resource economy • Software independence

Functionality • Installability
• Completeness • Reusability
• Correctness Reliability
• Security • Non-deficiency
• Compatibility • Error tolerance
• Interoperability • Availability

Maintainability Usability
• Correctability • Understandability
• Expandability • Ease of learning
• Testability • Operability

• Comunicativeness

From IEEE Std. 1061:

“Software quality is the degree in which software possesses a desired
combination of quality attributes. The purpose of software metrics is to make
assessments throughout the software life cycle as to whether the software
quality requirements are being met.

The use of software metrics reduces subjectivity in the assessment and control
of software quality by providing a quantitative basis for making decisions about
software quality.

However, the use of metrics does not eliminate the need for human judgment
in software assessment. The use of software metrics within an organization is
expected to have a beneficial effect by making software quality more visible.”

9

Page 9

© 2003 by Carnegie Mellon University page 9

Approaches to Quality Attributes

Performance — from the tradition of hard real-time
systems and capacity planning.
Dependability — from the tradition of ultra-reliable,
fault-tolerant systems.
Usability — from the tradition of human-computer
interaction and human factors.
Safety — from the tradition of hazard analysis and
system safety engineering.
Security — from the traditions of the government,
banking and academic communities.
Integrability and Modifiability — common across
communities.

There are different schools (opinions, traditions) concerning
the properties of critical systems and the best methods to
develop them.

These techniques have evolved in separate communities,
each with its own vocabulary and point of view.

There are no metrics or methods for evaluation applicable to
all attributes.

Different communities use different models and parameters
for evaluation of attributes:

•models are not necessarily mathematical formulas

•models can be based on expert opinions on how to
evaluate a quality attribute

Attributes values are not absolute e.g., a system is more or
less secure depending on the threat.

Attribute evaluations must be performed within specific 10

Page 10

© 2003 by Carnegie Mellon University page 10

Performance
"Performance. The degree to which a
system or component accomplishes its
designated functions within given
constraints, such as speed, accuracy, or
memory usage.“
[IEEE Std. 610.12]

“Predictability, not speed, is the foremost
goal in real-time-system design”

[J.A. Stankovic, “Misconceptions About Real-Time Computing: A
Serious Problem for Next-Generation Systems,” IEEE Computer,
Volume 21, Number 10, October 1988.]

A misnomer is that performance equates to speed; that is, to think that poor
performance can be salvaged simply by using more powerful processors or
communication links with higher bandwidth.

Faster might be better, but for many systems faster is not sufficient to achieve
timeliness. This is particularly true of real-time systems

As noted in [Stankovic 88], the objective of “fast computing” is to minimize the
average response time for some group of services, whereas the objective of
real-time computing is to meet individual timing requirements of each service.

•Hardware mechanisms such as caching, pipelining and multithreading,
which can reduce average response time, can make worst-case
response times unpredictable.

•In general, performance engineering is concerned with predictable
performance whether its worst-case or average-case performance.
Execution speed is only one factor.

11

Page 11

© 2003 by Carnegie Mellon University page 11

Performance Taxonomy

Performance Concerns Latency
Throughput
Capacity
Modes

Factors Environment
System

Methods Synthesis
Analysis

Concerns

•Latency - time to respond to a specific event

•Throughput - number of events responded to over an interval of time

•Capacity - demand that can be placed on the system while continuing
to meet latency and throughput requirements

•Modes - changes in demands and resources over time

Factors

•Environment (external) factors - how much of a resource is needed

•System (internal) factors - available resources and policies

Methords

•Synthesis methods - normal software development steps with explicit
attention to performance

•Analysis methods - techniques used to evaluate system performance

12

Page 12

© 2003 by Carnegie Mellon University page 12

Dependability

"Availability. The degree to which a system or
component is operational and accessible when
required for use.“

[IEEE Std. 610.12]

“Dependability is that property of a computer
system such that reliance can justifiably be
placed on the service it delivers”

[J.C. Laprie (ed.) “Dependability: Basic Concepts and Terminology”, Volume
5 of Dependable Computing and Fault-Tolerant Systems. Springer-Verlag,
February 1992.].

13

Page 13

© 2003 by Carnegie Mellon University page 13

Dependability Taxonomy

Concerns Availability
Dependability (attributes) Reliability

Safety
Confidentiality
Integrity
Maintainability

Factors Faults
(impairments) Errors

Failures

Methods Fault prevention
(means) Fault removal

Fault forecasting
Fault tolerance

Although the dependability community includes safety, confidentiality, integrity, and
maintainability as dependability concerns, these concerns have traditionally been the
focus of other communities, sometimes with different approaches.

Concerns
•Availability - readiness for usage
•Reliability - continuity of service
•Safety - non-occurrence of events with catastrophic consequences on the
environment
•Confidentiality - non-occurrence of unauthorized disclosure of information
•Integrity - non-occurrence of improper alterations of information
•Maintainability - aptitude to undergo repairs and evolution

Factors
•Faults - the adjudged or hypothesized event that causes an error
•Errors - a system state that is liable to lead to a failure if not corrected
•Failures - a system departs from intended behavior

Methods
•Fault prevention - covered by good software engineering practices
•Fault removal - removing faults during development
•Fault forecasting - predicting probabilities and sequences of undesirable
events during development
•Fault tolerance - detecting and correcting latent errors before they become
effective during execution

14

Page 14

© 2003 by Carnegie Mellon University page 14

Modifiability

Modifiability encompasses two aspects:

“Maintainability. (1) The ease with which a software system
or component can be modified to correct faults, improve
performance or other attributes, or adapt to a changed
environment. (2) The ease with which a hardware system or
component can be retained in, or restored to, a state in
which it can perform its required functions.”

“Flexibility: The ease with which a system or component
can be modified for use in applications or environments
other than those for which is was specifically designed.”

[IEEE Std. 610.12]

15

Page 15

© 2003 by Carnegie Mellon University page 15

Modifiability Taxonomy

Modifiability Concerns Extensibility
Simplification
Restructuring
Time to deploy
Functional scalability
Functional flexibility

Factors Component complexity
Component size
Scope of modification

Methods Modularity
Encapsulation
Software practice

Concerns
• Extensibility -
adding/enhancing/repairing functionality
• Simplification - streamlining/simplifying
functionality
• Restructuring - rationalizing services,
modularizing/optimizing/creating reusable
components
• Time to deploy - time taken from
specifying a requirement for new capability
to the availability of that capability
• Functional scalability - ability to scale
both up/down in terms of users, system
throughput, availability, etc.
• Functional flexibility - turning an
existing capability to new uses, new
locations, or unforeseen situations

16

Page 16

© 2003 by Carnegie Mellon University page 16

Usability

“Usability. The ease with which a user can
learn to operate, prepare inputs for, and
interpret outputs of a system or
component.”
[IEEE Std. 610.12]

Usability is a measure of how well users can take
advantage of some system functionality.

Usability is different from utility, a measure of
whether that functionality does what is needed.

17

Page 17

© 2003 by Carnegie Mellon University page 17

Usability Taxonomy
Usability Concerns Learnability

Efficiency
Memorability
Errors
Satisfaction

Factors Tradeoffs
Categories of users

Methods Usability Eng. lifecycle
Lifecycle stage methods
Architecture mechanisms

Jakob Nielsen, “Usability Engineering”, Academic Press, AP Professional,
Cambridge, MA, 1993.

Concerns
• Learnability - easy to learn; novices
can readily start getting some work done
• Efficiency - efficient to use; experts
have a high level of productivity
• Memorability - easy to remember;
casual users do not have to learn
everything every time
• Errors - low error rate; users make few
errors and can easily recover from them
• Satisfaction - pleasant to use;
discretionary/optional users are satisfied
when and like it

Factors
• Tradeoffs - depending on the
situation, usability might be
i d d d

18

Page 18

© 2003 by Carnegie Mellon University page 18

Factors: Learning Time Tradeoffs

Learning time

Focus on expert user

Focus on novice user

U
sa

g
e

p
ro

fi
ci

en
cy

 a
n

d
 e

ff
ic

ie
n

cy

[J. Nielsen, Usability Engineering, Fig. 2]

Learning curves for systems that focus on novice or expert users. J. Nielsen,
Usability Engineering, Fig. 2.

•It is not the case that a system is either easy to learn but inefficient or
hard to learn and efficient. A user interface can provide multiple
interaction styles:

•users start by using a style that is easy to learn

•later move to a style that is efficient
•Learnable systems have a steep rise at the beginning and allow users
to reach a reasonable level of proficiency within a short time.

Most systems have learning curves that start out with the user being able to do
very little at time zero, when they start using it.

Some systems are meant to be used only once and need to have zero learning
time:

• Walk-up-and-use (e.g., museum information systems, car-rental
directions to hotels)

• Systems that require reading instructions (e.g., installation programs,
disk formatting routines, tax preparation programs that change every
year)

19

Page 19

© 2003 by Carnegie Mellon University page 19

Factors: Accelerator Tradeoffs

Accelerators or shortcuts are user interface
elements that allow the user to perform
frequent tasks quickly, e.g.:
• function keys
• command name abbreviations
• double-clicking
• etc.

System can push users to gain experience:
• expert shortcuts in the novice menus
• On-line help
• analyze users’ actions and offer alternatives

Users normally don’t take the time to learn a complete interface before using it;
they start using it as soon as they have learned to do “enough” -- measures of
learnability should allow for this and not test for complete mastery of the
interface.

20

Page 20

© 2003 by Carnegie Mellon University page 20

Factors: Intentional Deficiency
Tradeoffs
Efficiency might be sacrificed to avoid errors, e.g.:

• asking extra questions to make sure the user is certain
about a particular action

Learnability might be sacrificed for security, e.g.:

• not providing help for certain functions e.g., not helping
with useful hints for incorrect user IDs or passwords

Learnability might be sacrificed by hiding functions
from regular users, e.g.:

• hiding reboot buttons/commands in a museum
information system

21

Page 21

© 2003 by Carnegie Mellon University page 21

Factors: Categories of Users

[J. Nielsen, Usability Engineering, Fig. 3]

E
xp

er
ie

nc
e

w
ith

 c
om

pu
te

rs

Experience with system

Exp
er

ien
ce

 w
ith

 do
main

minimal

extensive

Dimensions in which users’ experience differs, J. Nielsen, Usability
Engineering, Fig. 3

•Experience with the specific user interface is the dimension that is
normally referred to when discussing user expertise.

•In reality most people do not acquire comprehensive expertise
in all parts of a system, no matter how much they use it.

•Complex systems have so many features that a given user only
makes extensive use of a subset

•An expert could be a novice on parts of the system not normally
used by that user and need access to help for those parts of the
interface

•Experience with computers also has an impact on user interface
design. The same utility might have to be provided with two different
interfaces

•Utilities for system administrators vs. home computer users
(e.g., disk defragmentation

•Experience with other applications “carries over” since the
users have some idea of what features to look for and how the
computer normally deals with various situations (e.g., look for a
“sort” function on a new word processor because is common in
spreadsheets and databases)

•Programming experience determines to what extent the user
can customize the interface using macro languages in a way
that is maintainable and modifiable at a later date

•In addition, programmers’ productivity can range by a factor of
20!

22

Page 22

© 2003 by Carnegie Mellon University page 22

Security

“Secure systems are those that can be
trusted to keep secrets and safeguard
privacy.”

[J. Rushby, Critical System Properties: Survey and Taxonomy, SRI
International, Technical Report CSL-93-01, May 1993]

23

Page 23

© 2003 by Carnegie Mellon University page 23

Security Taxonomy

Security Concerns Confidentiality
Integrity
Availability

Factors Interface
Internal

Methods Synthesis
Analysis

Historically, there have been three main areas which have addressed security:

•government/military applications

•banking and finance, and

•academic/scientific applications.

In each case, different aspects of security were stressed, and the definition of
individual security attributes depended upon the stressed security aspects.

Concerns - The traditional main concern of security was unauthorized
disclosure of information. Secondary concerns were the ability to protect the
integrity of information and prevent denial of service:

•Confidentiality - data and processes are protected from unauthorized
disclosure

•Integrity - data and processes are protected from unauthorized modification

•Availability - data and processes are protected from denial of service to
authorized users

Factors
•Interface (external) factors - security features available to the user or between
systems 24

Page 24

Extend security to include the ability to maintain some level of service in the
presence of attacks.

Success is measured in terms of the success of mission rather than in the
survival of any specific system or component.

© 2003 by Carnegie Mellon University page 24

From Security to Survivability
Large-scale, distributed systems cannot be totally
isolated from intruders - no amount of “hardening”
can guarantee that systems will be invulnerable to
attack.

We design buildings to deal with environment stress
such earthquakes as well an intentional attacks such
as a break-in.

We need to apply a similar approach to software
where the faults are malicious attacks.

25

Page 25

© 2003 by Carnegie Mellon University page 25

Dynamic Changes in Attacks

High

Low

1980 1985 1990 1995 2000

password guessing

self-replicating code

password cracking

exploiting known vulnerabilities

disabling audits
back doors

hijacking
sessions

sweepers

sniffers

packet spoofing

GUI
automated probes/scans

denial of service

www
attacks

Tools

Attackers

Intruder
Knowledge

Attack
Sophistication

“stealth” / advanced
scanning techniques

burglaries

network mgmt. diagnostics

DDOS
attacks

Figure 1.2 in J.H. Allen, et al., “State of the Practice of Intrusion Detection
Technologies,” CMU/SEI-99-TR-028, Software Engineering Institute, Carnegie
Mellon University, 1999.

“In the 1980s, intruders were the system experts. They had a high level
of expertise and personally constructed methods for breaking into
systems. Use of automated tools and exploit scripts was the exception
rather that the rule. Today absolutely anyone can attack a network -
dues to the widespread and easy availability of intrusion tools and
exploit scripts that duplicate known methods of attack.”

26

Page 26

© 2003 by Carnegie Mellon University page 26

Attacks are faults

There are prevention, detection and recovery
techniques:

• the threat assessment has to include
assumptions about the attacker

• system responses should take advantage
of known attack patterns (intrusion aware
design)

• cost/benefit and tradeoffs analysis
requires knowledge of the impact of the
attacks

Solutions should include prevention measures, detection of
attacks, and describe how the system should react to such
events.

27

Page 27

© 2003 by Carnegie Mellon University page 27

Survivability Taxonomy
Survivability Concerns Resistance to attacks

(attacks) Recognition of attacks
Recovery after attack

Factors Strategies for repelling attacks
(strategies) Strategies for detecting attacks

and evaluating damage
Strategies for limiting damage,

restoring information/functionality
within time constraints, and
restoring full services

(attack) Direct (internet/network) attacks
Methods Social engineering attacks

Insider attacks
Trusted sites/agencies attacks

N.R. Mead et al, Survivable Network Analysis Method (CMU/SEI-2000-TR-
013), Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, September 2000.
http://www.sei.cmu.edu/publications/documents/00.reports/00tr013.html

28

Page 28

© 2003 by Carnegie Mellon University page 28

Safety

To paraphrase the definition of dependability:

“Dependability is that property of a computer
system such that reliance can justifiably be
placed on the services it delivers.”
[J.C. Laprie, 1992]

Safety is that property of a computer system
such that reliance can justifiably be placed in
the absence of accidents.

29

Page 29

© 2003 by Carnegie Mellon University page 29

Safety vs. Dependability

Safety is not the same as dependability:
• dependability is concerned with the

occurrence of failures, defined in terms
of internal consequences (services are
not provided)

• safety is concerned with the occurrence
of accidents or mishaps, defined in terms
of external consequences (accidents
happen)

The difference of intents between safety and dependability — “good things
(services) must happen” vs. “bad things (accidents) must not happen” — gives
rise to the following paradox:

•if the services are specified incorrectly, a system can be dependable
but unsafe — for example, an avionics systems that continues to
operate under adverse conditions yet directs the aircraft into a collision
course

•a system might be safe but undependable — for example, a railroad
signaling system that always fails-stops

30

Page 30

© 2003 by Carnegie Mellon University page 30

Safety Taxonomy

Safety Concerns Interaction complexity
Coupling strength

Factors
(impairments) Hazards (conditions)

Mishaps (consequences)

Methods Hazard identification
Hazard analysis
Implementation

methodologies
Implementation

mechanisms

Concerns:
•Interaction complexity - the extent to which the behavior of one component
can affect the behavior of other components
•Component coupling - the extent to which there is flexibility in the system to
allow for unplanned events

Factors:
•Hazards - conditions (i.e., state of the controlled system) that can lead to a
mishap
•Mishaps - unplanned events that result in death, injury, illness, damage or
loss of property, or environment harm

Methods:
•Hazard identification - Develop a list of possible system hazards before the
system is built
•Hazard analysis - identifies risk mitigation steps after identifying a hazard
•Implementation methodologies - Avoid introduction of errors during the
development process and, if unavoidable, detect and correct them during
operation.
•Implementation mechanisms - Prescribe or disallow specific states or
sequences of events

31

Page 31

© 2003 by Carnegie Mellon University page 31

Combinations of Methods

Methods can be combined to achieve the
quality benefits while reducing effort.

Methods can come from different quality
attributes.

32

Page 32

© 2003 by Carnegie Mellon University page 32

Improving Performance

Variations in optimistic protocols
[F. Pedone, “Boosting System Performance with Optimistic Distributed
Protocols,” IEEE Computer, Volume 34, Number 12, December 2001.]

Start AM VT
End

RM CM End

Start AM VT
End

RM AM
End

VT
RM AM VT End

Start
AM VT

End

CM

RM

End

AM Aggressive mechanism
CM Conservative mechanism
RM Recovery mechanism
VT Verification test

From Pedone, 2001:

“Optimistic protocols aggressively execute actions based on best-case system
assumptions. When the optimistic assumptions hold, the protocol executes far
more efficiently than a pessimistic protocol. However, when the assumptions
do not hold, the optimistic protocol may execute more slowly than a pessimistic
protocol because repairing the incorrect actions can impose performance
penalties. Using optimistic protocols unquestionably involves trade-offs, but if a
protocol is well designed and the optimistic assumptions hold frequently
enough, the gain in performance outweighs the overhead of repairing actions
that execute incorrectly.”

Optimistic protocols are techniques to increase performance that share some
elements with Recovery Blocks and (Dual) redundancy.

Pedone’s article offers examples of various distributed protocols: Optimistic
atomic broadcast, Optimistic virtual synchrony, Optimistic two-phase commit,
Distributed optimistic concurrency control, and Optimistic validation of
electronic tickets.

For each of these examples, Pedone defines the optimistic assumption, the
aggressive mechanisms, the verification test, the recovery mechanisms, and
the conservative mechanism.

33

Page 33

© 2003 by Carnegie Mellon University page 33

Improving Fault Removal

Fault removal techniques like (exhaustive) formal
verification might not be practical while (incomplete)
testing might miss detection of some errors:
• both techniques can be combined provided there are

consistency checks between the model and the actual
code

• model verification might suggest areas to test and testing
some execution paths might suggest changes to the
model

• in addition, fault avoidance techniques (e.g., coding
rules) might enhance coverage of both verification and
testing

[Sharygina, N., and Peled, D., “A Combined Testing and Verification
Approach for Software Reliability”, Springer-Verlag Lecture Notes in
Computer Science, pages 611-628, 2001.]

For an example of combination of the three methods see:

•N. Sharygina, J. C. Browne and R. Kurshan, “A Formal Object-Oriented
Analysis for Software Reliability:Design for Verification”, Proceedings of The
European Joint Conferences on Theory and Practice of Software (ETAPS)
2001, Springer-Verlag Lecture Notes in Computer Science (LNCS) 2029,
Pages 318-332, 2001.

•Sharygina, N., and Peled, D., “A Combined Testing and Verification Approach
for Software Reliability”, Proceedings of Formal Methods Europe (FME) 2001,
Springer-Verlag Lecture Notes in Computer Science (LNCS) 2021, pages 611-
628, 2001.

34

Page 34

© 2003 by Carnegie Mellon University page 34

Improving Fault Tolerance

Most methods focus on “errors of commission”
and not on “errors of omission”:

• detecting departure from intended behavior (error of
commission) offers cues that help error detection

• detecting that a system does not do what it is not supposed
to do (error of omission) is more difficult

• however, there is empirical evidence that exception failure,
an error of omission, causes 2/3 of system failures!

[F. Cristian, "Exception Handling and Tolerance of Software Faults," pages
81-107 in Software Fault Tolerance, M.R. Lyu, (ed.), Wiley, Chichester,
1995.]

35

Page 35

© 2003 by Carnegie Mellon University page 35

Testing for Exception Failure

Hazard analysis techniques that can be used
to develop check-lists that would improve
testing for exception handling errors:

• check-lists must be system specific or context
dependent, otherwise the list would be too long and
difficult to use

• a fishbone diagram provides useful visual cues

[R.A. Maxion, and R.T. Olszewski, “Eliminating Exception Handling
Errors with Dependability Cases: A Comparative, Empirical Study,” IEEE
Transactions on Software Engineering, Volume 26, Number 9,
September 2000.]

36

Page 36

© 2003 by Carnegie Mellon University page 36

Example Fishbone Diagram
Quality Electrical Mechanical

Copy too dark Random reboot Jammed feeder
Copy too light State errors Dirty drum

Wrinkled copy Toner not fused to medium
Lid is Original

up still on glass

Copier
problems

Out of toner Damaged paper
Labels worn off keys Out of paper Slides instead of paper

Auditron key bounce Out of fuser Curl oriented wrong

User Interface Resource Medium

[Figure 3 in Maxion 2002]

37

Page 37

© 2003 by Carnegie Mellon University page 37

Improving Security - Defense in
Depth

Application
User authentication
Access control
Content checks
User activity monitor & audits

Firewall
Application proxies
Packet filtering

Server
User authentication
Resource management
Application infrastructure
Host intrusion detection

Network
intrusion
detection
Abnormal behavior

Portal
User authentication

Defense in depth is a popular approach to providing information assurance. In
this example,

•A firewall can provide protection by controlling the services and
machines can be externally accessed. A firewall can also restrict which
external IP addresses can access internal resources.

•Network intrusion detection software can monitor network traffic for
abnormal behavior.

•A server can provide additional protection in terms of host-based
intrusion detection to monitor general user activity on the sever. A
standard technique is to provide only the minimal set of services
required (say no ftp, telnet, mail) so that an attacker is limited in the
techniques they can apply.

•Finally the application can also provide a level of defense. Many
attacks such as an email virus are attacks which exploit the data. So
the application which understands the details of the data exchange and
the data content is in a good position to mitigate such attacks. The
email system is in the best position to monitor email attachments for
viruses.

User authentication can be applied either an a portal to control access
to the entire site or on a server or application.

38

Page 38

© 2003 by Carnegie Mellon University page 38

Example Problem Description

A system processes input data from the environment
and in turn sends results back to the environment.

An important requirement could be that system
failure rate be less than some minimum reliability
requirement.

Environment System

39

Page 39

© 2003 by Carnegie Mellon University page 39

Approaches to Dependability

Output from the first component
that passes its acceptance test

C3 A3C2 A2A1

Pass Fail

Input from environment to
the first component

C1

Recovery Blocks (RB)

Input from
environment

Input sent to all
participants

P1

P2

P3

Outputs sent
to a voter

V

Triple-Modular Redundancy (TMR)

Output from voter to the environment

In Triple-Modular-Redundancy (TMR) three components perform redundant
(but not necessarily identical) computations. A voter chooses the “correct”
result as the output from the system

•if the voter detects a faulty participant, it ignores that participant from
then on and continues operating with the remainder

•if the voter can not make a decision, the voter (and system) fail-stops

In Recovery Blocks (RB) multiples components perform computations in
sequence. After each computation is completed, an acceptance test is
conducted and if the component is deemed to have worked properly, the
results are accepted. If the component is deemed to have failed, the original
state is recovered and a different component starts the computation. If none of
the components passes their acceptance tests, the system has failed and it
stops.

40

Page 40

© 2003 by Carnegie Mellon University page 40

TMR Dependability Analysis

The reliability of a TMR system is:

The Mean-Time-To-Failure of a TMR system without
repairs is:

The MTTF of a TMR system with repairs is:

λ λ λ λ and µ µ µ µ are the failure and repair rates, respectively.

RTMR t() 3e
2λλλλ t–

2e
3λλλλt–

–=

MTTFTMR 3e
2λλλλ t–

td
0
∞∞∞∞
∫∫∫∫ 2e

3λλλλ t–
td

0
∞∞∞∞
∫∫∫∫–

 3
2λλλλ------ 2

3λλλλ------– 5
6λλλλ------= = =

MTTFTMR
5

6λλλλ------
µµµµ

6λλλλ2
---------+=

For discussion of the reliability and MTTF equations, see [Siewiorek and
Swartz, Reliable Computer Systems, Second edition, Digital Press 1992]

In this example there are many possible reliability block diagrams, depending
on the hardware resource allocation and the software architecture (structure
and behavior of the software components):

•An initial reliability block diagram could be deduced from the structure given
that the reliability of each component (Rp1, Rp2, Rp3, RV) has been specified.

•If components share resources, their reliabilities are not independent (they
have common-mode failures) and the shared resources must be represented in
the block diagram.

Finally, depending on the nature of the “voting,” the system reliability can vary:

•a majority voter requires agreement between at least two components to
determine the correct output

•an averaging voter computes the average of the three inputs (perhaps subject
to some “reasonability” test)

•a priority voter might assign weights to different components (for example, the
component executing the simpler or better known algorithm might have a
higher weight)

41

Page 41

© 2003 by Carnegie Mellon University page 41

Tradeoffs Between Dependability
and Performance in TMR

If the components share a processor the latency
depends on how many components are working:

• performance calculations should be based on
worst-case i.e., all components are working

• voter can decide when to send output to constrain
latency variability

42

Page 42

© 2003 by Carnegie Mellon University page 42

RB Dependability Analysis

For a 3-component recovery block system :

Where c is the acceptance test coverage.

• If c=1 (test never fails):

• If c=0.5 (test fails half the time):

• If c=0 (test always fails):

RRB t(((()))) e
λλλλ t–

C
i

1 e
λλλλ t–

–(((())))
i

i 0=

2
∑∑∑∑= MTTFRB

1
λλλλ--- (1 c

2
--- c

2

3
-----)+ +=

MTTFRB
4

3λ3λ3λ3λ
___=

MTTFRB λλλλ
1=

MTTFRB
11
6λλλλ------=

Recovery Blocks implements a different type of redundancy. Several
components process information from the environment but only one at a time.
In the case of a three-component Recovery Block system:

•the voter selects component P1 if P1 is working; or else it selects P2 if
P2 is working; or else it selects P3 if P3 is working; or else it shuts
down (the system fails).

•since the voter must make a decision based on just one component’s
results, the voting is more complicated and takes the form of an
“acceptance test”

In the worst case, with an acceptance test coverage c=0, the MTTF of the

recovery block system is 1/ λ λ λ λ That is, if the primary module’s acceptance test
always fails (i.e., never detects an error) the MTTF is just that of the primary
module.

In the best case, with perfect acceptance test coverage c=1, the MTTF of the
recovery block system is 11/6λλλλ

•This is almost twice that of the TMR system without repairs.

•This is the case in which all modules have acceptance tests that never
fail to detect their errors.

•This might not be a reasonable assumption in all cases.

43

Page 43

© 2003 by Carnegie Mellon University page 43

Tradeoffs Between Dependability
and Performance in RB
Latency variability is greater:

• components perform different algorithms
(execution time varies)

• acceptance tests are component-dependent
(execution time varies)

• when a component fails, there is a roll-back to a
safe state before the next alternative is tried
(previous execution time is wasted + time to
restore state)

44

Page 44

© 2003 by Carnegie Mellon University page 44

Additional Tradeoffs Between
Dependability and Performance

TMR and RB repair operations also affect
performance:

• running diagnostics
• restarting a process
• rebooting a processor

45

Page 45

© 2003 by Carnegie Mellon University page 45

Dependability Sensitivity Points
If a component has a failure rate of one per 1000 hrs.
and a repair rate of one per 10 hours (λλλλ=0.001, µµµµ=0.1):

The Mean Time To Failure for the alternatives are:

• Non-redundant component = 1/λ = 1,000 hours

• TMR without repair = 5/(6λ) = 833 hours

• RB with 50% coverage = 4/(3λ) = 1,333 hours

• RB with 100% coverage = 11/(6λ) = 1,833 hours

• TMR with repair = 5/(6λ) + µ/6λ2) = 17,500 hours

The choice of “voting” technique (i.e., TMR or RB)
constitute a sensitivity point for dependability.

46

Page 46

© 2003 by Carnegie Mellon University page 46

Risks in TMR and RB

Depending on the TMR approach to repairs, different
risks emerge:

• a TMR system without repair is less dependable
that just a single component!

• a TMR system with very lengthy repairs could be
just as undependable

The RB time to execute components, tests, and
recoveries varies and could present a performance
risk if the deadlines are tight.

47

Page 47

© 2003 by Carnegie Mellon University page 47

Impact of Software Architecture on
Quality Attributes

In large software systems, the achievement
of quality attributes is dependent not only
upon code-level practices (e.g., language
choice, algorithms, data structures), but
also upon the software architecture.

It is more cost effective to detect potential
software quality problems earlier rather than
later in the system life cycle.

When the software architecture is specified, designers need to
determine:

•the extent to which features of the software architecture influence
quality attributes

•the extent to which techniques used for one attribute support or conflict
with those of another attribute

•the extent to which multiple quality attribute requirements can be
satisfied simultaneously

48

Page 48

© 2003 by Carnegie Mellon University page 48

Influences on the Architect

Architect’s influences

Stakeholders

Development
organization

Technical environment

Architect’s experience

Architecture

System

Architect(s)
Requirements

In addition to technical factors, the architecture is
influenced by business and social forces coming
from multiple stakeholders [Bass 98]

The ABC works like this:
• Stakeholders and organizational goals influence and/or determine the set of

system requirements.
• The requirements, the current technical environment, and the architect’s

experience lead to an architecture.
• Architectures yield systems.
• Systems, and their successes or failures, suggest future new organizational

capabilities and requirements. They also add to the architect’s experience
that will come into play for future system designs, and may influence or even
change the technical environment.

There are multiple activities in the architecture business cycle:
•creating the business case for the system

•understanding the requirements

•creating or selecting the architecture

•representing and communicating the architecture

•analyzing or evaluating the architecture

•implementing the system based on the architecture

•ensuring that the implementation conforms to the architecture

These activities do not take place in a strict sequence. There
are many feedback loops as the multiple stakeholders
negotiate among themselves, striving for agreement.

49

Page 49

© 2003 by Carnegie Mellon University page 49

Stakeholders of a System

Behavior,
performance,

security,
reliability!

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Neat features,
short time to market,
low cost, parity with
competing products!

Modifiability!

Ohhhhh...
Architect

Development
organization’s
management
stakeholder

Marketing
stakeholder

End user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

This slide illustrates some of the many stakeholders of a system. Each type of
stakeholder has a different set of requirements.
In some cases, the requirements overlap (low cost is a recurring theme!), but in
other cases, the requirements may be mutually exclusive. It is the architect’s job
to juggle and balance the conflicting requirements of the various stakeholders.
The result is that the architect may feel overwhelmed by the volume and
conflicting nature of all the various requirements, which can affect the decisions
made in choosing or developing an architecture.
As we will see later in this course, it is important for the architect to seek and
encourage the active engagement of all stakeholders early in the project. This
places the architect in a better position to make adjustments and tradeoffs when
conflicting stakeholder requirements are identified.

50

Page 50

© 2003 by Carnegie Mellon University page 50

Interactions Between Stakeholders

Scenarios
Architecture
information

Attribute
models

Analysis
results

Requirements &
constraints

Attribute
experts

Risks,

sensitivities, &

tradeoffs

Users

Domain
experts

DevelopersArchitect

Other
stakeholders

Imagine the stakeholders sharing a blackboard:

•participants can provide or obtain information at any time

•participant can use information from any other participant

Stakeholders must identify the quality attribute requirements and constraints.

The architect provides architectural information including the components and
connections between components, showing the flow of data, and the the behavior —
underlying semantics of the system and the components, showing the flow of control.

Stakeholders propose scenarios describing an operational situation, a modification to
the system, a change in the environment, etc.

•Scenarios are used to explore the space defined by the requirements,
constraints, and architectural decisions. Scenarios define tests to be conducted
through architecture analysis

Some stakeholders (e.g., domain experts) identify models for evaluating quality
attributes. Some models are specific to certain quality attributes, other models are
applicable to multiple attributes.

Depending on the attributes of interest, there are different qualitative and quantitative
techniques to conduct the analysis: focus on system activities (e.g., latency,
availability), focus on user activities (e.g., time to complete a task), focus on the system
(e.g., modifiability, interoperability).

Depending on the attribute models and the architectural approaches, various risks,
sensitivities and tradeoffs can be discovered during the analysis:

•risks — alternatives that might create future problems in some quality attribute

•sensitivity points — alternatives for which a slight change makes a significant
difference in some quality attribute

•tradeoffs — decisions affecting more than one quality attribute

51

Page 51

© 2003 by Carnegie Mellon University page 51

Stimuli, Environment, Response

Example Use Case Scenario:
• Remote user requests a database report via the Web

during peak period
and receives it within 5 seconds.

Example Growth Scenario:
• Add a new data server

to reduce latency in scenario 1 to 2.5 seconds
within 1 person-week.

Example Exploratory Scenario:
• Half of the servers go down

during normal operation
without affecting overall system availability.

Scenarios are used to exercise the architecture against current and future
situations:

•Use case scenarios reflect the normal state or operation of the system.

•Growth scenarios are anticipated changes to the system (e.g., double
the message traffic, change message format shown on operator
console).

•Exploratory scenarios are extreme changes to the system. These
changes are not necessarily anticipated or even desirable situations
(e.g., message traffic grows 100 times, replace the operating system).

The distinction between growth and exploratory scenarios is system or
situation dependent.

•What might be anticipated growth in a business application might be a
disaster in a deep space probe (e.g., 20% growth in message storage
per year).

•There are no clear rules other than stakeholder consensus that some
scenarios are likely (desirable or otherwise) and other scenarios are
unlikely (but could happen and, if they do, it would be useful to
understand the consequences).

52

Page 52

© 2003 by Carnegie Mellon University page 52

Architecture Analysis Approaches

The SEI has developed two approaches to
assess the consequences of architectural
decisions in light of quality attribute
requirements:

• Architecture Tradeoff Analysis Method
(ATAM)

• Quality Attribute Workshop (QAW)

53

Page 53

© 2003 by Carnegie Mellon University page 53

Different in Application

ATAM
• requires a software architecture
• stakeholders propose scenarios
• scenario analysis during meetings

QAW
• before software architecture is drafted
• stakeholder scenarios refined into test

cases
• scenario analysis completed off-line but

results presented during meetings

In an ATAM evaluation, an external team facilitates stakeholder meetings
during which scenarios are developed representing the quality attributes of the
system. These scenarios are then prioritized, and the highest priority scenarios
are analyzed against the software architecture.

In a QAW, the highest priority stakeholder-generated scenarios are turned into
“test cases” by adding additional details (e.g., context, assets involved,
sequence of activities). The architecture team then independently analyzes the
“test cases” against the system architecture and documents the results.

The test case creation and analysis phase often takes place over an extended
period of time. After completing this phase, the architecture team presents the
results to the sponsors and stakeholders.

54

Page 54

© 2003 by Carnegie Mellon University page 54

The ATAM Process

The ATAM process is a short, facilitated
interaction between the stakeholders to
conduct the activities outlined in the
blackboard, leading to the identification of
risks, sensitivities, and tradeoffs:

• risks can be the focus of mitigation activities, e.g.
further design, further analysis, prototyping

• sensitivities and tradeoffs can be explicitly
documented

55

Page 55

© 2003 by Carnegie Mellon University page 55

ATAM Phases

ATAM Steps
1 2 3 4 5 6 7 8 9

Phase 1
(Small group,
usually one day)

(informal interactions continue between phases)

Phase 2

(larger group,(recapitulate/elaborate Phase 1)
usually two days)

Time

ATAM evaluations are often conducted in two stages or phases:

•during phase 1 the architect describes the quality attribute goals and
how the architecture meets these goals

•during phase 2 evaluators determine if the larger group of stakeholders
agrees with the goals and the results

56

Page 56

© 2003 by Carnegie Mellon University page 56

ATAM Phase 1

Start

Steps 1-3:
ATAM
Presentations

Step 4:
Architectural
approaches

Step 5:
Utility tree
generation

Outcome:
Identified
architectural
approaches

Step 6:
Scenario
analysis

Outcome:
Quality attributes
and prioritized
scenarios

Outcome:
Risks,
sensitivities,
tradeoffs

ATAM Phase 1

Outcome:
Business
drivers and
architectural
styles

57

Page 57

© 2003 by Carnegie Mellon University page 57

ATAM Phase 2

Recapitulation
of ATAM Phase
1 Steps 1-6

Step 7:
Scenario
generation

Step 8:
Scenario
analysis

Outcome:
Prioritized
scenarios

Step 9:
Presentation
of results

Outcome:
Risks,
sensitivities,
tradeoffs

ATAM Phase 2

Outcome:
Understanding
of Phase 1
results

58

Page 58

© 2003 by Carnegie Mellon University page 58

Quality Attribute Workshops

The Quality Attributes Workshops (QAW)
are a variation of ATAM that is applicable
earlier in the life-cycle, before a complete
software architecture has been defined.

59

Page 59

© 2003 by Carnegie Mellon University page 59

The QAW Process

Start

Activity:
QAW
Presentations

Activity:
Scenario
generation

Activity:
Test case
development

Outcome:
prioritized,
refined
scenarios

Activity:
Test case
analysis

Outcome:
Architectural
test cases

Activity:
Presentation
of results

Outcome:
Analysis
results

yes

no

Outcome:
Additiona
l results

Stop?

Presentation of results meeting(s)Test case generation and analysisScenario generation meeting(s)

Create/modify
system
architecture

M.R. Barbacci, et al., Quality Attribute Workshops, 2nd Edition, (CMU/SEI-
2002-TR-019). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 2002.

The process can be organized into four distinct segments: (1) scenario
generation, prioritization, and refinement; (2) test case development; (3)
analysis of test cases against the architecture; and (4) presentation of the
results. These are the four red ovals in the figure.

The first and last segments of the process occur in facilitated one-day
meetings. The middle segments take place off-line and could continue over an
extended period of time.

The process is iterative in that the test case analyses might lead to the
development of additional test cases or to architectural modifications.
Architectural modifications might prompt additional test case analyses, etc.

There is a further iteration, not shown in the figure, in which test cases are
developed in batches, sequential analyses are performed, and each time, the
architecture is modified accordingly.

60

Page 60

© 2003 by Carnegie Mellon University page 60

Test Case Context

Describes the mission, the assets involved,
the geographical region, the operational
setting, and the players.

For example in a test case involving a
failure, the test case may define:

• the operation at the time of failure
• what happens immediately after, when the system

is reacting to the failure,
• degraded operation during the interval when repair

is underway
• restoring the system to normal operation.

Test case
development

Test
cases

Prioritized
refined

scenarios

61

Page 61

© 2003 by Carnegie Mellon University page 61

Example Test Case Context

“Humans and robotic missions are present in the
Mars surface when one of three stationary-stationary
satellites has a power amplifier failure.
The primary communications payload is disabled for
long-haul functions but ….. Secondary Telemetry and
Tele-Command (TTC) for spacecraft health is …..
The crew on the surface is concentrated in one area
and the other missions ….
The event occurs late in the development of the
communications network, so the system is well
developed.”

Test case
development

Test
cases

Prioritized
refined

scenarios

62

Page 62

© 2003 by Carnegie Mellon University page 62

Test Case Issues and Questions

The test case includes a number of
questions about the events, to be answered
by the analysis:

• to help focus the analysis, questions are
grouped according to a specific issue of
concern

• issues are tagged by the quality attributes
it addresses, e.g., performance, security

Test case
development

Test
cases

Prioritized
refined

scenarios

63

Page 63

© 2003 by Carnegie Mellon University page 63

Example Issues and Questions
1. Issue: Mission safety requires consistent and

frequent communications between the crew and earth
(P, A)

a) Question: How long does it take to detect the
failure?

b) Question: How long does it take to reconfigure the
system to minimize the time the crew is without
communication?

2. Issue: System operation will be degraded (P, A)
a) Question: Is there a way for the customer to simplify

their procedures so they can handle a larger number
of missions with less trouble than coordinating two
as they do now?

b) Question: What redundancy is required?
c) Question: Is there a way to send information about

the degraded satellite back to Earth for analysis?

Test case
development

Test
cases

Prioritized
refined

scenarios

64

Page 64

© 2003 by Carnegie Mellon University page 64

ATAM and QAW Status

We have experience in using the methods
in a wide variety of application areas.

There is an ATAM handbook and a training
course to make process repeatable and
transitionable. Most of the material is
relevant to the QAW process.

Additional information available:

http://www.sei.cmu.edu/activities/ata

