Designing Like Mother Nature: An Introduction to Genetic Algorithms

Designing Like Mother Nature

An Introduction to Genetic Algorithms

Dr. Derek S. Linden
(703) 561-3400 dlinden@ieee.org

Linden
Innovation
Research v..c

About the Speaker, Derek Linden

B.S., USAF Academy, 1991, Applied Physics (Elec. Systems
M.S., MIT, 1993, EE (Solid State Devices/Superconductivity)

Rome Lab, 1993 - 1996, basic research on superconductors|at
microwave frequencies, antennas, GAs

Ph.D., MIT, 1997, Thesis: “Automated Design and
Optimization of Wire Antennas Using Genetic Algorithms”

N

Current research: Increasing GA efficiency, applying GAs to
new problems

Linden Innovation Research LLC

— Automated Design and Optimization Consulting, Training
and Software

(c) Linden Innovation Research LLC

IEEE CS Meeting, April 15, 199



Designing Like Mother Nature: An Introduction to Genetic Algorithms

IEEE CS Meeting, April 15, 199

Introduction to GAs: Overview

» Goal: to introduce the fundamental concepts of a G/
— What is a GA?
— GA basics
— Exanples

>

What is a GA?

A probabilistic, iterative search and optimization
strategy

Mimics biological intra-species adaptation and
evolution through mating and survival-of-the-fittest

Finds optima for many types of numerical problems
Requires:

— A codirg stratgy

— An oljective function

— A matirg and mutation scheme
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The GA lterative Process

Initialize new
population

Simulate and evaluate
new members

¢

Rank-order all
members

!

Mutate children

Choose mates and
create children

Is convergence
criteria met?

i YES

Output results

NO

GA Terms
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An Exanple Desgn Problem

4 Variables, with Constraints: M
Material: ceramic, glass, plastic
Diameter: 2"-5”
Height: 3"-6”
Thickness: 0.1"-0.5"

Dependent constraint: h
Weight < 1.5 Ibs.

Optimize for: v
Heat Retention = f(M,d,h,t) N~
Cost = f(M,d,h,t) < d >
Volume = f(d,h)

7
Setup for GA Optimization
Chromosome: M i<
Material Diameter Height Thickness T
01 1010 0100 1101
Glass 4.0" 2.8"  0.447 h

!

fe—ag—
Objective Function = d

Heat Retention + Volume - Cost - Penaliy/eight
(Penalty is non-zero only if Weight above 1.5 Ibs.)
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Snashot Durirg the GA Process

@@ ’C@

L
Cola o
o

Brief Histoly

» Before the GA, algorithms based on mutation were
tried

» John Holland (University of Michigan)
— Holland had the basic GAylthe mid-1960s

— Monagraph in 1975—“Adaptation in Natural and
Artificial Systems”

— Puipose: to understand guteve processes in natural
systems and degm artificial s/stems that mimic
natural gstem behavior

» David Goldberg—textbook in 1989

10
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Current Areas of Aplication

» Mechanical Engineering

» Software Design

* Electromagnetics
 Electrostatics

« Atrtificial Intelligence/Artificial Life
* Robotics

» Aeronautical Engineering

» Financial

11

The GA Process

» Set up simulator/equations to evaluate members of populatign
» Define problem—constraints, unknowns, variables
» Determine objective function

» Determine chromosome mapping

» Determine genetic algorithm characteristics
— mating selection, crossover, mutation, population size, etc.

* Run the GA optimization process
» Output the optimal design characteristics

12
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Objective Function

Gives a single score based on simulation results

Used to rank-order the members of the population

Single criteria or multi-criteria

Include any penalty terms for violating constraints

Fitness = -c1gain + c2 mismatch + c3 distortion
+ ¢4~ (amount of power violation)

13

1-D Binaly and Real Chromosomes

* Binary:
0011101010
— Usually each variable consists of several bits
— Most commony} used ly far, good for mosproblems
* Real:
0.546 0.010 0.530 0.223 0.750 0.456 0.555
— Usually each variable consists of grdine number

— Use forproblems involvig mostly real, continuous
variables

14
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Chromosome Maping: Exanple

74
(0.05 - 0.50)

(0.01-0.10) (0.05 - 0.50)
z3] X1
X2 Jlz2
(0.05 - 0.50) (0.01-0.10)
Z1
(0.03 - 0.35)

o G

Binary 1-D|00000 111111 00000 11111 00000 11111
71 72 z3 z4 X1 X2

Real 1-0 0.452| 0.33% 0.102 0.8(/3 0.525 0j651
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Mating Process

» The basic mating process:

— Eliminatepoor performers (totapopulation remains
constant)

— Choose chromosomes to mate
— Create offpring

« Simple GA: replaces whole population with new
children, though some are copies of parents

» Steady-State GA: saves a portion of the population
each generation

« Elitist: saves top chromosome

16
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Mating Selection

* In biology, mates are chosen through natural selectior|
— Brightest flower, strongest male, most attractive call

* Most common GA method: weighted roulette wheel

7 8 910

1 = Most fit member
10 = Least fit member
Spin 1: First Parent
Spin 2: Second Parent

» Usually weighted by fitness, or qualities like similarity

17

Concept: Crossover

Aﬁgﬁ:ﬁc
a B C

Chiasma

18
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1-D Binaly Mating—
Single-Point Crossover

Parent chromosomes:
[00011110]
{11001100}

Let the crossover point be between the 5th and 6th bit
(but could be between any two bits)

Children: [00011]{100}
{11001}[{110]

Works the same way for real chromosomes, except
no functional genes are able to be split

19

1-D Real Chromosome Matin

» Heuristic crossover

- 1
fltneﬁ D\O\ch)g
2

gene value

e Quadratic crossover

. 1
f't”eﬁ > child 3

gene value

* Many other methods exist Adewuya, 1996

20
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1-D Binaly and Real
Chromosome Mutation

« Binary: Bit flip
— Flipa randomy selected > Oor® 1
* Real: Uniform mutation

 Real: Gaussian mutation

I I
lower limit upper limit

lower limit upper limit

21

The GA Parameters

» Population Size: 30 - 10,000
(most I've heard of: 1,000,000)

» Parent pool size (overlap): 10%-50%
» Probability of mutation: < 2%

» Convergence criteria:
— # generations
— # simulations
— non-improvement
— loss of diversity
— when | choose to stop it

22
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Putting the Process Tgether

Initialize new
population

Simulate and evaluate Mutate children
new members

¢

Rank-order all
members Choose ma_tes and
l create children
Is convergence
criteria met? NO

i YES

Output results

23

Typical GA Behavior: Fitness

» Best fitness, Average fitness vs. Generation

14000
12000 |

Fithess

1 11 21 31 41 51 61 71 81 91
Generation

24
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GA Advantaes

» Properly implemented, it can lead to optimal solutions
relatively rapidly and efficiently

» Prevents the solution from getting trapped in local minima
through parallelism

* |s zeroth-order/blind—requires no information other than the
objective function value for each chromosome

» Can optimize very complicated systems with no human
intervention (not even an initial guess!)

* Very robust to parameters, coding, etc.

» Able to be implemented in a parallel manner
Sim 1 Sim 3

25

GA Exanples

» Discrete problems
— Truss tpology desgn
— VLSI connection degnh
— Job Shp Process Plannin
« Continuous problems
— Turbine egine degjn
— Pattern nestop(Parts lgout)
— Sinmple wire antenna
— Folded monpole & Crooked-wire antennas

26
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Truss T@ology Despgn

* Use a GA to determine an optimal truss structure with
the least amount of material given a load

Busign Damain

Faauthicmg
“lF'F-'U-'II:: Tapalogy:
L Rromosome: L...'__I_..I
gjoj1ja|o
11111007000 3011111 pjoji|d]|D
gloj1|Q|0
TIE 101

Chapman et al., 1994
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Truss T@ology Despgn

» Example optimized designs at differing resolutions

28
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Job Shp Process Plannm

* Minimize the cost and hassle in machining custom parts

* Many different combinations of machine, tool, and setup are

possible to create the same part

Zhang, et al.,1997

29

Job Shp Process Plannm

Minimize | Machine| Setup Tool Cost

Machine 0 11 13 2664
Setup 8 0 10 3799
Tool 12 5 0 5014
Cost 1 3 8 1739

30
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VLSI Connection Degn

* Rather complex GA technique compared with 2-4 other standard
VLSI techniques in each of 10 classic benchmarks

* GA was best method for each benchmark in numbers of vias
» Best for overall wire length in 7 of 10 benchmarks
* 2nd best in the other 3 benchmarks, and usually a close second

» Crosstalk requirements can be added, which none of the other
techniques can handle

Leinig, 1997

31

Turbine Emine Desgn

At least 100 variables, each —
with a continuous range |

Search space of 30 points
Fitness: compliance with

about 50 constraints +
performance measures

Pratt&Whitney Engine

Engineer: 8 weeks for a satisfactory design
Engineer + Expert system: less than 1 day w/ 2x improvement
GA + Expert system: 2 days w/ 3x improvement over engineer alpne

Holland, 1992

32

(c) Linden Innovation Research LLC 1



Designing Like Mother Nature: An Introduction to Genetic Algorithms

IEEE CS Meeting, April 15, 199

Pattern Nestig

» Applications in many industries

— Clothing
— Shpbuilding
— Automobilepart manufacturig
I 3
|. ll..'l;"
|II l"'-,
i JLIE
- —=]

Dighe & Jakiela, 1996

33

Pattern Nestig

» Minimizing rectangular enclosure

68.4%

34
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Pattern Nestig

* Minimizing height

70.4% 72.4%
e, I.i__ Y
\ [ ."r e r"T.#'-_"---
RN ‘\';'f i
B J — 1\
S DL s
- A ——
‘ﬂﬂ—t i oo T =
{ AL / 0 SN
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Simple Wire Antenna

* The design
Driven element 0.3 AT
Drive point —
(in center of element)
Separation distance
0.04 - 2A
Reflector element 0 - X o tm

FADILATION PATTERN

Linden, 1997

36
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Simple Wire Antenna

* The search space

10

1.88
1.68
1.48

1.28

1.08

08 geparation
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Simple Wire Antenna

» The objective function

— Maximizegain in forward direction (alregda sirgle
number)

e The chromosome

— Two real values for lagth and sparation
* GA parameters

— 20 chromosomes, 50% ovar]®.6% mutation

38
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Simple Wire Antenna
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Folded Mon@ole, Crooked-Wire
Antennas

* The problem: Our goal in each case was to achievela
single objective: the broadest beam possible over the
upper hemisphere

Score =Zgver aoo(Gain®@,) - Avg. Gain¥

— Folded monpole —powergain only

— Crooked wire antennas — RH circufanlarization
gain

40
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The Folded Monpole Chromosome

Goal: Hemispherical coverage, regardless of polarization

74
(0.05 - 0.50)

(0.01-0.100 (0.05 - 0.50)
z3] X1
X2 Jlz2
(0.05 - 0.50) (0.01-0.10)
Z1
(0.03 - 0.35)

o G
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Folded Mon@ole Results

$=0°(dot) f = 1600MHz
45°(dash)
Gain 5 90°(solid)

(dB)

_1 L L L L L L L L L L L L L L L L L
90 -70 50 -30 -10 10 30 50 70 90
8 (deg.)

Altshuler & Linden, 1997
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Crooked-Wire Genetic Antenna

Space

Goal: Coverage over hemisphere 10 above the horizon
with right-hand circular polarization

/‘\

/‘
A i
7z

(X1,Y1,21)(X2,Y2,22)(X3,Y3,Z3)...(X7,Y7,27) 105 bits

o
. g —

0.5\
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Crooked-Wire Genetic Antenna
Results

10
f = 1600MHz

5F
0° 135 90°

Gain s
(dB j7 @ = = i
45°
0

-5~

10— v
-90 -70 -50 -30 -10 10 30 50 70 90
0(deg.)

Linden & Altshuler, 1996
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