

Current Areas of Application

- Mechanical Engineering
- Software Design
- Electromagnetics
- Electrostatics
- Artificial Intelligence/Artificial Life
- Robotics
- Aeronautical Engineering
- Financial

The GA Process

- Set up simulator/equations to evaluate members of population
- Define problem—constraints, unknowns, variables
- Determine objective function
- Determine chromosome mapping
- Determine genetic algorithm characteristics
 - mating selection, crossover, mutation, population size, etc.
- Run the GA optimization process
- Output the optimal design characteristics

- Gives a single score based on simulation results
- Used to rank-order the members of the population
- Single criteria or multi-criteria
- Include any penalty terms for violating constraints

Fitness = -c1 * gain + c2 * mismatch + c3 * distortion+ c4 * (amount of power violation)

1-D Binary and Real Chromosomes

• Binary:

0011101010

- Usually each variable consists of several bits
- Most commonly used by far, good for most problems

• Real:

- 0.546 0.010 0.530 0.223 0.750 0.456 0.555
- Usually each variable consists of only one number
- Use for problems involving mostly real, continuous variables

Job Shop Process Planning				
Minimize	Machine	Setup	Tool	Cost
Machine	0	11	13	2664
Setup	8	0	10	3799
Tool	12	5	0	5014
Cost	1	3	8	1739
Cost	1	5	0	1757

Folded Monopole, Crooked-Wire Antennas

• The problem: Our goal in each case was to achieve a single objective: the broadest beam possible over the upper hemisphere

Score = $\Sigma_{\text{over all } \theta, \phi}(\text{Gain}(\theta, \phi) - \text{Avg. Gain})^2$

- Folded monopole power gain only
- Crooked wire antennas RH circular polarization gain

45