Model-Driven Software
Development:
What it can and cannot do

Jon Whittle
Associlate Professor
Information & Software Engineering

George Mason University
http://ise.gmu.edu/~jwhittle

Outline

1 Introduction to OMG’s Model-driven Architecture (MDA):
— What is MDA?
— Example
— MDA supporting technologies: metamodeling,
transformations, executable UML
— Tool support

1 Introduction to Microsoft’'s Software Factories
— Domain Modeling
— Domain-Specific Languages
— The Microsoft-OMG Debate
1 Model-Driven Development (MDD) in the future

System Modeling

1 What is a (system) model?

— “A simplified description of a complex entity or
process” [web dictionary]

— “A representation of a part of the function, structure
and/or behavior of a system” [ORMO1]

— “A description of (part of) a system written in a well-
defined language” [KWBO03]

1 Key point:
— Models are abstractions

— Entire history of software engineering has been one
of raising levels of abstraction (01s — assembly
language — 3GLs —» OO — CBD — patterns —
middleware — declarative description)

Why Model?

1 Models can be used in:
— System development
— System analysis
— System testing/validation/simulation

1 Each requires abstraction of complexity

1 WWhy not model?
— Large(r) effort required
— Synchronization
— Delayed return
— Requires specialized skills

From FRAO3

Model Taxonomy

Model

AN

Business

Model

System
Model

AN

Logical
Model

Requirements
Model

AN

Physical
Model

Computational
Model

AN

Platform

Independent

Model

Platform
Specific
\Y [eYo =Y

Internal reqmts:

Cf. 4+1 VieWS Cost/planning, schedule,

Monitoring, reuse, portability,
Etc. Layered view.

End-user Programmers
Functionality Software management

OO decomposition
Development‘_,
View

" Logical View s

— —~
l (Scenarios) l

T £ Availability,

Performance,

Fault tolerance,
scalability

-V Process View - Physical View
Pipeffilter

Client/server etc.

Integrators System engineers
Performance Topology

Scalability Communications

From [4+1]
6

Abstraction in UML

1 Use case model abstracts away:
— Computation
— lrrelevant or low-priority functionality
— Non-functional requirements

1 Analysis model abstracts away:

Decisions on “ilities”: performance and distribution requirements;
optimizations etc.

Decisions on data structures
Booch/Rumbaugh/Jacobson: 1:5 ratio going from analysis to design
(for class diagrams): operations interface, “design attributes”, visibilities,
navigability
i Design model abstracts away:
— Physical deployment (nodes, processors etc.)
— Use of Source files, libraries etc.

Abstraction In
UML (cont’d)

1 Sequence diagrams abstract to:
— Inter-object (component, process) communications

1 State machines abstract to:
— Intra-object behaviors
— Without method implementations
— Without middleware concerns
— Abstract communication

1 Class diagrams abstract to:
— Structure, no behavior

1 \WWhat's new:
— Support for components
— Much improved interaction diagrams

1MSC-like constructs
1Interaction overview diagrams

— Metamodel for OCL2.0
— More consistent UML metamodel
— Tighter relationship between MOF and UML

1 Modeling software systems:
— What is the future?

= =

Sketch Blueprint Programming

10 > language

Rhapsody, RoseReal Time, Simulink,

Rational XDE, OptimalJ
& *-?-/
B

DS1: / '
230, 000LOC

Outline

1 Introduction to Modeling
_

1 Introduction to Microsoft’'s Software Factories
— Domain Modeling
— Domain-Specific Languages
— The Microsoft-OMG Debate
1 Model-Driven Development (MDD) in the future

MDA Definition

1 Model Driven Architecture:

— Recent initiative from the Object Management Group
(OMG) making models and transformations between
models first-class elements

— Builds on UML and OCL (Object Constraint
Language)
— More info:

1 MDA Explained: The Model Driven Architecture, Practice &
Promise, Anneke Kleppe, Jos Warmer & Wim Bast

1 Model Driven Architecture. Applying MDA to Enterprise
Computing. David S. Frankel. OMG Press 2003.

1 http://www.omg.org

Why MDA?

1 Productivity problem:

— Time/budget-crunch means early lifecycle artifacts
are not maintained

1 Requirements documents, design documents etc. (UML or
other) become obsolete

— Why spend so much time on high-level specs
anyway?
1 Cf. eXtreme programming, agile modeling

1 Portability problem:

— Technology is growing fast (Java, XML, UML, J2EE,
NET, JSP, SOAP, Flash etc.)

— How does software keep up?

Why MDA?

1 Interoperability problem:

— Systems need to interoperate with other
systems
1Cf. web-based systems, component-based
systems

1 Maintenance/Documentation problem:

— Despite best-practice advice, most software
projects do not adequately model/document
software, let alone maintain it

1 MDA lifecycle similar to

traditional lifecycle, but:
MDA

— Emphasis on creation of Process
formal models (i.e., models
that can be understood by
computer)

1 2 types of models:
— Platform-independent model
— Platform-specific model
1 3 types of transformations:
— PIM-to-PIM
— PIM-to-PSM
— PSM-to-code

1 Importance of transformation
automation

deployment
Taken from [RWB03]

MDA Benefits

1 Productivity:
— Work is done mainly at the PIM level
— PIM-to-code transformation is automated

— Caveat: need to define transformations, but they can be reused
(hopefully)

1 Portability:
— PIMs are implementation-independent

— Incorporate new technologies by defining new (reusable)
transformations

1 Interoperability:
— MDA tools should generate bridges

1 Maintenance/Documentation:

— Changes to the PIM can be filtered down to PSM/code by re-
applying transformations

MDA requirements

1 Consistent & precise high-level models

1 Standard, well-defined language(s) to
write high-level models

— OMG Standards

1 Modeling — UML; Metamodeling — MOF; Action
semantics; Model interchange — XMI; Human-
readable textual notation — HUTN,; ...

1 Transformations:
— Definitions
— Transformation language (formal) QVT
— Transformation tools

Models in MDA

1 MDA models:

— Must be precise (enough)
— May be software or business models
— May be written in UML or some other language

— May be code (code is a model)

1 Caveats:
— How precise is UML?

— Is there a clear distinction between a PIM and a
PSM?

Transformation consists of:;

— A set of transformation rules

1 Unambiguous specifications of the way that (part of) one model can be used
to create (part of) another model

Definitions:

— A transformation is the automatic generation of a target model from a
source model, according to a transformation definition

— A transformation definition is a set of transformation rules that together
describe how a model in the source language can be transformed into a
model in the target language

— Atransformation rule is a description of how one or more constructs in
the source language can be transformed into one or more constructs in
the target language

Preferred characteristics:
— A transformation should be semantics-preserving

Note: transformations may be between different languages. In
particular, between different dialects of UML (UML profiles)

Taken from [KWBO03]

Simple Example:
public/privateattributes

1 Transformation: UML PIM to UML/Java PSM

1 Purpose: transform public attributes into get/set
operations

Eititle : String
&name : String

title : Strin
e Str?ng > &dateOfBirth ; Date

Customer
Customer

¢zdateOfBirth : Date

WgetTitle() : String
WsetTitle(title : String)
¥getName() : String
¥setName(name : String)
WgetDateOfBirth() : Date
¥setDateOfBirth(d : Date)

Taken from %IQWBO3]

Transformation Definition

1 For each class named className, transform
into a class named className

1 for each public attribute attributeName : Type of
class className, create attributes/operations for
className in the PSM as follows:

— Private attribute attributeName : Type
— Public operation getAttributeName() : Type
— Public operation setAttributeName(att : Type)

1 Exercise: define a Java PSM-to-code
transformation that generates Java code for
Java PSMs

Taken from %&WBO3]

saversiy Simple example: associations

Customer
wititle : String

Order

gnumber : Integer

wname : String
&dateOfBirth : Date

Question: is this
transformation
reversible?

gdate : Date

ltem

gnumber : String
gname : String
gprice : Amount

Customer

E8title : String
&%name : String
E5dateOfBirth : Date
Eorders : Set

WoetTitle() : String
VsetTitle(title : String)
WgetName() : String
¥setName(name : String)
WgetDateOfBirth() : Date
Ws etDateOfBirth(d : Date)
SgetOrders() : Set
WsetOders(o: Set)

Order

EBnumber : Integer
E¥date : Date

& customer : Customer
Efitems : Set

FgetNumber() : Integer
FsetNumber(n : Integer)
WgetDate() : Date
WsetDate(d : Date)
#getCustomer() : Customer
WsetCustomer(c : Customer)
Wgetltems() : Set
Wsetltems(s : Set)

ltem

Enumber : String
&¥name : String
E&price : Amount

FgetNumber() : Integer
WsetNumber(n : Integer)
WgetName() : String
WsetName(s : String)
FgetPrice() : Amount
¥setPrice(p : Amount)

Taken from %I%WBO3]

More realistic example:
Rosa’s-breakfastservice

1 Example from MDA explained. Code downloadable from
http://www.klasse.nl/mdaexplained

1 Business:
Rosa’s company home-delivers breakfasts

Customers order from web-based menu, choosing time and place of
delivery

Pay by credit card over the Web

Different packages: french breakfast, champagne feast breakfast, indian
breakfast

Packages are customizable
Choice of styles: simple, grand, deluxe

1 Software:
— Web-based, three-tier architecture
1 Database, EJB middle-tier, JSP user interface
— Two web interfaces: one for customer, one for employees
— Database of customer details

Rosa’s MDA

Rosa’s PIM @

UML-to-ER UML-to-EJB UML UML-to-Web UML

A4 1

PSM

[SQL source code EJB source code JSP source code

[Relational PSM 03 Gl ol [Web PSM

24
Adapted from [KWBO03]

Rosa’'s PIM

BreakfastOrder Customer
deliveryAddress : Address .
deliveryDate : Date orders customer 2gg°reinéwxngés'slm eger
deliveryTime : Date - 1 '
discount : Real .
orderDate : Date T createOrder(
calculatePrice()

order ¥
breakfasts
1. standard StandardBreakfast
name : String
BreakfaSt - —————|price : Real
number : Integer N 1 |style : Style
+*)
ast Comestible
com St|b|e name : String Comes,tjblex —
/ ~—IminimalQuantity : Integer < \
* Iprice : Real 1.7 N

Change transportForm : String Part

quantity : Integer

quantity : Integer

25
Taken from [KWBO03]

PIM-to-relational
transformation

Consistent object-relational mapping
— Well-known rules ([2])

Basic data types:
— UML String => SQL VARCHAR(40)
— UML Integer => INTEGER

— UML Date => DATE

UML data type (e.g., Address) with no operations =>
number of columns (one per field of the data type)

UML class => table
UML attribute of basic type => column
UML attribute of class type => use foreign key

Z conc
MAS = PIM-to-relational (contd)

1 Association from class A to class B

— If the association A to B is adorned by an association
class or the multiplicity at both ends is more than one

— then create a table representing the association class
or the association and create foreign keys in both the
table representing A and the table representing B
referring this new table

— else if the multiplicity at one end is zero or one

1then create a foreign key in the table representing the class
at the other end, referencing that end

1 else /* the multiplicity of the association is one-to-one */

1 Create a foreign key in one of the tables, referencing the
other end

Taken from KWB03]

/’EEDRG
mSN PIM-to-EJB Transformation

Key idea: minimize number of components and interactions between
components

— Group related classes into components

— Exchange data between classes in “chunks”

This means:

— Don'’t create a component for each class

— Don't create remote method invocations for each get/set-operation
EJB data schema: a set of classes, attributes and associations that is
served by an EJB component as a whole

EJB data class: a class that is part of an EJB data schema

Create EJB data schemas using composite aggregation:
— Every class that is part of a whole is clustered into the data schema that is
generated from the whole

— Association classes are clustered into the data schema generated from the
associated class that is able to navigate to the other associated class

1 E.g., Change becomes part of BreakfastOrder

Z. Top-level EJB

<<EJBEntityComponent>>

Breakfasto rd er <<EJBEntityComponent>>
Customer

<<EJBEntityComponent>>

StandardBreakfast

<<EJBEntityComponent>>
Comestible

29
Taken from [KWBO03]

EJB Component Model for Comestible
and StandardBreakfast

<<EJBDataSchema>> T
standardBreakfast e
StandardBreakfastKey
<<EJBDataSchema>> standardBreakfastID : int
StandardBreakfast
name : String <<EJBSeningAttribute>>
price : Real (S e <<EJBEntityComponent>>
style : Style e —
standardBreakfastID : int ! Stan d ard BreakfaSt
1
<<EJBKeyClass>>
To..* PartKey
standardBreakfastID : int
<<EJB|ga;a|?1I:ass>> comestiblelD : int

quantity : int \

\ <<EJBKeyClass>>
. ComestibleKey

‘ comestiblelD : int

<<EJBDataSchema>>

comestible

<<EJBDataSchema>>

Comestible

name : String
minimalQuantity : Integer

L <<EJBSeniingAttribute>> <<EJBEntityComponent>>

price : Real — —_

transportForm : String ! ComeSt|b | e

comestiblelD : int

30
Taken from [KWBO03]

EJB Model to
Code_Transformation

EJB Profile

EJB Component
PSM

Class diagrams, where classes v

relate one-to-one to actual Java classes | -

EJB Class
PSM

MASONE 158 UML — EJB Profile

1 To develop entity beans, you must provide:
— Entity bean class and all classes it depends on
— Key class
— Entity bean’s remote interface and home interface

— Deployment descriptor written in XML defining
transactional behavior of the business methods and
persistence strategy for a component

1 Rosa’s Breakfast Service will have container
managed persistency

MDA Supporting
Technologies

1 Metamodeling

— How to define your own modeling languages
1 Specializations of UML
1 [Domain-specific modeling languages (DSMLs)]
1 Transformations
— Transformation language
— Standardization efforts (QVT)

1 Making UML more precise
— Design by Contract

1 Executable UML

— Making UML executable
— The dawn of the model compiler

UML as PIM

Plain UML.:
— Strong in modeling structural aspects, weak in modeling behavior

— Can be used to generate PSMs for structural aspects, but not for behavioral
1 E.g., how would you generate code for use case or interaction diagram?

1 Executable UML.:
— Plain UML + dynamic behavior of Action Semantics
— No standardized concrete syntax
— State machine becomes anchor point for defining behavior:
1 Each state enhanced with a procedure written in the AS
— In principle, can be used to generate PSMs for behavior, but:

1 AS too low level — no advantage over writing dynamics of the system in the PSM
directly

1 State machines only relevant for certain domains
1 No standardized concrete syntax

1 UML/OCL combination:
— Helps to define precise, unambiguous PIMs
— Dynamics can be specified using pre/post-conditions
— Still have to write the PSM dynamics, but can check against pre/post-conditions

MDA ToO0IS [pased on kY03]

Support for PIMs
Support for PSMs
Can Target Multiple PSMs
Model Integration

System Evolution

Model Interoperability

Mappings are modelled

Support for Managing Model Complexity

Correctness

Expressivity

Patterns and Genericity

Support for Refactoring

Intra-Model Mappings

Traceability

Lifecycle

Standardization

Makes things worse

No support

Little support

Some support

Strong support

Very Strong support

Comparison

IDE OptimalJ | Rose Objecteering
RealTime

Support for PIMs 4 4 4
Support for PSMs 4 1

Can Target Multiple 2
PSMs

Model Interoperability

Mappings are
modelled

Correctness

Expressivity

Patterns and
Genericity

Support for
Refactoring

Traceability

Lifecycle

Standardization

Productivity Study

1 Independent study (Middleware company)

1 Development of J2EE petstore application
— Compuware’s OptimalJ
— Enterprise-level IDE

1 Application:

— E-commerce J2EE petstore

— 46 page specification

— Users:
1 sign in and manage their account
1 Browse pet catalog
1 Manage shopping cart
1 Place orders
1 Query orders

Study methodology

1 Teams chose their own support tools (e.g., logging,
version control)

1 37 scenarios used to test the results to ensure
comparability
1 |nspection of code to compare quality

1 3 members per team:
— Senior J2EE architect
— Experienced J2EE programmers (>3yrs)

1 \Weekly timesheet submissions on work packages
(Estimated vs actual time included)

Why did MDA win?

The value of MDA is analogous to the value of OQ in general. It requires more of you in the design phase,
and the payoff comes in the implementation phase. And once you've built one or two apps, you really start
to get the benefit from it.

It makes brain surgeons better brain surgeons, but it won’t make janitors into brain surgeons

Less debugging of “silly”” mistakes

More efficient (and disciplined) use of design patterns
50-90% of code could be generated

BUT:

Sometimes, the code generated was very heavy-weight or didn’t do what the developers thought it was
going to do
Large learning curve

Outline

1 Introduction to Modeling

1 Introduction to OMG’s Model-driven Architecture (MDA):
— What is MDA?
— Example
— MDA supporting technologies: metamodeling,
transformations, executable UML
— Tool support

1 Model-Driven Development (MDD) in the future

B‘ GEORG

UNIVERSITY MOde|S

Reusable

assets
Framew,

Compg

Librari
&

<CallRecord>
<caller><nu

Templatizing

Portions copyright © 2003-2005 Microsoft Corporation. Used by permission. Portions copyright © 2003-2005 Jack Greenfield 42
& Keith Short with Steve Cook & Stuart Kent. Used by permission of John Wiley & Sons, Inc. All rights reserved.

how to add a
service

ideas - \

conveyed by
working together

Automating the
Architecture

§ Add Service
Validate Service
Refactor ...

documented ideas -

not necessarily well-
read or up to date! tooled ideas —

» positive help for developer — saves time

- positive encouragement to conform to
architecture

Portions copyright © 2003-2005 Microsoft Corporation. Used by permission. Portions copyright © 2003-2005 Jack Greenfield
& Keith Short with Steve Cook & Stuart Kent. Used by permission of John Wiley & Sons, Inc. All rights reserved.

Domain-Specific
Modeling

1 Language-driven engineering (LDE):
— Why? The right abstraction for the right job
1 Metamodel: a model of a language capturing its
Important properties:
— Concepts
— Syntax (Concrete and Abstract)
— Semantics
1 Why?
— Increased precision
— Domain-specific mappings
1 How?
— Capture DSML via metamodeling

UML Profiles

1 Lightweight approach to tailoring UML
— E.qg. for platforms (.NET, EJB)
— E.g., for domains (telecomms, real-time)

1 Adapt an existing metamodel
— Cannot change existing metaclasses

1 In particular, can only add new constraints
— Cannot replace existing constraints

Domain-Specific Modeling

1 Design Patterns

1 Components

— “We deliver the parts, you assemble the car with all
the extras”

— Architectural mismatch

1 Frameworks = Components + Patterns

— “We’ve got the car body, you do the rest..or we'll do it
for you for a price”

1 Weak Domain Analysis

— Many business application frameworks start off as a
development effort for one customer. They grow with
more projects.

46
By Madhu Gopinathan

... IS a software engineering paradigm based on
modeling software system families such that,
given a particular requirements specification, a

highly customized and optimized intermediate

or end-product can be automatically
manufactured on demand from elementary,
reusable implementation components by means of
configuration knowledge.

47
By Madhu Gopinathan

Generative Domain Model

Problem Space

* Domain specific
concepts and

*Features

Domain specific
languages
*Programming Languages
*Extensible languages
*Graphical languages
*Wizards etc.

Configuration Knowledge
*lllegal feature combinations
*Default settings

*Default dependencies
*Construction rules
*Optimizations

Generator technologie
*Simple traversal
Templates
*Transformation systems etc.

Solution Space

*Elementary
components

* Maximum
combinability

* Minimum
redundancy

Component technologies
«Component models
*AOP approaches etc.

48
By Madhu Gopinathan

Microsoft vs MDA

1 Microsoft (Steve Cook):
— UML is too big and too bad
— XMI/MOF are just platforms themselves

— and they change rapidly leading to combinatorial
explosion

— In practice, standards conformance is hard to achieve

1 MDA (David Frankel & Michael Guttmann)
— XMI/MOF problems just due to immaturity
— DSMLs lead to balkanization
— Not always easy or cost effective to define DSMLs

— Microsoft modeling tools are proprietary & map to
Microsoft proprietary technology

Outline

1 Introduction to Modeling

1 Introduction to OMG’s Model-driven Architecture (MDA):
— What is MDA?
— Example
— MDA supporting technologies: metamodeling,

transformations, executable UML
— Tool support
1 Introduction to Microsoft's Software Factories
— Domain Modeling
— Domain-Specific Languages
— The Microsoft-OMG Debate
8 Model-Driven Development (MDD) in the future

1 How to deal with behavior?
— State machines?
— Domain-specific modeling?
1 Trust

— Verifiability of transformations
1 Code “tampering”
1 Standards evolution (cf. XMlI)
1 Too many levels of abstraction?
1 Social issues
1 ROI

MDD Myths

1 MDD will put programmers out of a job
— |t doesn’t generate 100% code
— Focus (initially) on “low-hanging fruit”
8 MDD Is just code generation
— It can be code generation, but also model-based

testing, simulation, validation, business process
modeling etc.

— It is firmly grounded on reusable standards
1 MDD model equals UML model
i MDA/MDD is just about OO
1 MDD and agile methods don’t mix

1.

Transition from “sketch” UML to
“programming language” UML

|dentify “killer app” transformations

ldentify DSML fragments
. Validate your models
ldentify “MDA personas’

MASON MDD Research at GMU

1 Early lifecycle model simulation

— Precise requirements language, use case charts

— Grounded in UML but executable

— Simulate requirements and analysis models early in the loop
1 Aspect-oriented modeling

— Separate development concerns at model time

— Automatically combine concerns for holistic inspection, analysis,
code generation

8 Trusted model transformations
— How can | trust code generated from my model?

1 |Integrating auto-coding and legacy code/in-house
applications

— Customizing code generators to fit existing architectures

References

[KWBO03] MDA Explained. The Model Driven Architecture: Practice and Promise.
Anneke Kleppe, Jos Warmer and Wim Bast. Addison Wesley 2003.

[Fra03] Model Driven Architecture. Applying MDA to Enterprise Computing. David S.
Frankel. OMG Press 2003.

[KY03] An Evaluation of Compuware OptimalJ Professional Edition as an MDA Tool.
Kings College London & University of York 2003.

[ORMO1] Architecture Board ORMSC, Model Driven Architecture. OMG Document
ormsc/2001-07-01, 2001.

[CESWO04] Applied Metamodelling: A Foundation for Language Driven Development.

Tony Clark, Andy Evans, Paul Sammut & James Willans) (available for free at
http://www.xactium.com)

[UML]The Unified Modeling Language Specification (UML2.0 Superstructure, Final
Adopted Specification), ptc/03-08-02. Contact point: Bran Selic.
http://www.omg.org/cqi-bin/doc?ptc/2003-08-02

[Whi02] Transformations and Software Modeling Languages. Jon Whittle. 2002
International Conference on the Unified Modeling Language

[4+1] Architectural Blueprints — the “4+1” view model of software
architecture. Phillipe Kruchten. IEEE Software, 12(6), 1995, pps. 42-50

