IEEE-IAS Atlanta Section

CH2MHILL®

Mark A. Sorrells, PE May 20, 2013 msorrells.ee85@jeee.org

- INPUTS:
 - P&ID's
 - Load List
 - Distribution Philosophy
 - Basis of Design
 - Layout Drawings

- P&ID's
 - Process Motor Loads
 - Process Heater Loads
 - Heat Tracing

Switchboard	Yotage	Source	Total Demand				Continuous Loed					Intermittent Load					Spare Load					
Na.	[kV]	Bus No.	kW	kvar	AVA	PF (%)	RV	kvar	kVA	PF (%)	CF (%)	DF x kVA	kW	kvar	kVA	PF (%)	CF (%)	CF x kVA	kW	kyar	kVA	PF (%)
SG-01	13.8	< fap >	B441	3988	9336	90.4	8750	4119	9671	90.5	52.0	8897	47	31	56	83.7	30.0	17	2516	1265	2816	89.3
MC-02	4.16	SG-02	1147	622	1305	87.9	1247	676	1418	87.9	92.0	1305					25.0					
MC-03	4.16	SG-02	785	401	881	89.1	830	421	931	89.2	92.0	856					25.0		212	135	251	84.4
36-02	4.16	96:01	6815	3198	7528	90.5	8316	3879	9176	90.6	75.0	6882	23	19	30	78.1			2310	1156	2583	89.4
EXISTING-A	0.48	5G:01									100.0						50.0					
EXISTING-8	0.48	SG-01									100.0						50.0					
MC-021	0.48	SG-02	71	47	85	83.6	64	41	76	84.4	86.0	66	23	19	3D	78.1	42.0	13	40	24	47	85.9
MC-031	0.48	SG:01	174	105	203	85.5	191	116	223	85.5	91.0	203					33.0					
MC-041	0.48	9G-01	265	136	298	99.9	243	125	273	89.0	96.0	262	24	12	27	89.0	47.0	13	206	109	233	88.3
DP-01	0.24	MD-041	58	30	65	88.8	48	25	54	88.8	95.0	52	24	12	27	89.0	50.0	13	54	27	60	89.3

- Load List
 - Non- Process Motors
 - HVAC
 - Air Compressors / Vacuum Pumps
 - Lighting
 - Indoor
 - Outdoor
 - UPS for Communications / Security / Fire Alarm

- Distribution Philosophy
 - Voltage Level(s)
 - Distribution Scheme
 - Protection Scheme / Philosophy
 - Selectivity
- Basis of Design
 - Motor HP / Voltage Ranges
 - Motor Protection Philosophy
 - Lighting Voltage
- Layout Drawings
 - Location of Electrical Rooms & Transformers
 - Load Concentration(s)

- Use the proper ABBREVIATIONS.
- Follow the LEGEND sheet.
- Don't mix ANSI and IEC symbols for the same item type.
- Proper TERMINOLOGY (Ratings, Equipment)
- Indicate FUTURE expansion capability.
- Indicate normal operational mode (OPEN/ CLOSE) for all switching devices
- Provide a front VIEW.

Include the following:

- Utility Supply System
 - Available SC current (including X/R ratio)
 - Line supply voltage
 - High-voltage protective devices and switches
 - Show the normal operating mode
 - Type(s) of relays

Transformers

- Nameplate rating(s) (kVA and kV) and temperature rise
- Cooling Method (ONAN, ONAF {AA, FA})
- High-voltage winding voltage taps and winding connection (delta/wye)
- Low-voltage winding voltage taps and winding connection (delta/wye)
- Impedance and kVA base
- Grounding scheme and ohmic value of neutral resistor(s) if used;
 show connections
- Surge arrestors and capacitors (show switching if switched), and connections
- Metering of utility supply, primary protective devices

Switchgear

- Manufacturer(s), type, model, current rating, MVA class
- Symmetrical interrupting current rating, and asymmetrical momentary/closing-and-latching current rating for main, tie, and feeder devices
- Phase arrangement, voltage, ampacity, bracing of bus

Motor loads

- List individual medium-voltage motors including HP/KW, RPM, and type (induction, synchronous)
- Include powerhouse motors (chillers, compressors, etc.)
- LV motors on MCC's: Categorize load by size(s) at a minimum
- Indicate all VFD motors, RV starters

■ Feeder cables

- Number of feeders
- Cable insulation and type
- Installation design (conduit, IAC in tray, size of tray, number of cables in tray, etc.)
- Nominal maximum current rating and basis
- Cable callouts are consistent

Other

- Dedicated lighting loads
- Special purpose loads, such as data processing and computer applications
- Capacitor banks, including switching
- Relay coordination and protective-device settings (on separate documentation)
- Standby Generators

Electrical Drawing Preparation Grounding Plans

Electrical Drawing Preparation Grounding Plans

■ INPUTS:

- Basis of Design
- Ground Resistance Data
- Grounding Calculations
- Layout Drawings
 - Process Equipment (Large Motors, Tanks)
 - Electrical Rooms
- Structural Drawings
 - Foundations
 - Columns

Ground Grid Summary Report

	Rg	GPR Ground Potential Rise		Maximun	n Touch Pote	ntial		Maximum Step Potential						
	Ground Resistance ohm		Tolerable Volts	Calculated Volts	Calculated %	Coordin	nates (m)	Tolerable	Calculated	Calculated	Coordinates (m)			
		Volts				X	Y	Volts	Volts	%	X	Y		
	0.636	631.9	328.2	436.8	133.1	23.6	62.5	841.8	127.7	15.2	239.10	19.77		
	Total Fault Cu	ırrent	1.800 kA	Reflect	Reflection Factor (K):			322						
	Maximum Grid Current:		0.994 kA		Surface	e Layer De	rating Factor (C	s): 1.	231					
					Decrer	nent Factor	(Df):	1.	001					

Electrical Drawing Preparation Plan Drawings

- Overall Plan
 - North ARROW

SCALE: Consistent, include graphic bar

- Match lines
- Reference drawings
- TITLE Block
- Follow LEGEND Sheet
- General notes: Generic to Specific

- COLUMN line numbers
- General arrangement of process equipment

Electrical Drawing Preparation Grounding Plans

- Facility Ground System
 - Primary
 - Earth Electrode Subsystem
 - Fault Protection Subsystem
 - Lightning Protection Subsystem
 - Signal Reference Subsystem
 - Secondary
 - Static Protection
 - Cathodic Protection
 - Safety (Maintenance) Grounding

Grounding Plans Facility Ground System

Primary

Earth Electrode Subsystem

network of interconnected rods, wires, pipes, or other configuration of metals which establishes electrical contact between the elements of the facility and the earth¹

Fault Protection Subsystem

ensures that personnel are protected from shock hazard and equipment is protected from damage or destruction resulting from faults that may develop in the electrical system¹

Grounding Plans Facility Ground System

Primary

Lightning Protection Subsystem
 provides a nondestructive path to ground for lightning energy contacting or induced in facility structures¹

Signal Reference Subsystem

The purpose of a signal reference ground is to provide a low impedance signal reference system for electronic equipment to minimize noise-induced voltages and thereby reduce equipment malfunctions²

Grounding Plans Facility Ground System

Secondary

- Static Protection
 static ground is a connection between a piece of equipment and earth to drain off static electricity charges before they reach a sparking potential²
- Cathodic Protection
 Cathodic protection is a method to reduce corrosion by minimizing the difference in potential between anode and cathode.³
- Safety (Maintenance) Grounding
 Temporary grounding is provided to protect workers engaged in deenergized electric line maintenance.⁴

Electrical Drawing Preparation Grounding Plans

- Facility Ground System
 - Primary
 - Earth Electrode Subsystem IEEE 142-2007 (Green Book)
 - Fault Protection Subsystem NFPA 70 (NEC®)
 - Lightning Protection Subsystem NFPA 780
 - Signal Reference Subsystem IEEE 1100-2005 (Emerald Book)
 - Secondary
 - Static Protection NFPA 77
 - Cathodic Protection NACE SP9999
 - Safety (Maintenance) Grounding NFPA 70E, IEEE C2

Electrical Drawing Preparation Grounding Plans - Earth Electrodes

- IEEE 142-2007 (Green Book)
 - Chapter 4 Connection to earth
 - 4.1 Resistance to earth (Table 4-5—Formulas for the calculation of resistances to ground)
 - 4.2.3 Concrete encased electrodes
 - 4.3.1 Choice of rods
 - 4.3.3 Connecting to electrodes
 - 4.4 Measurement of resistance to earth
 - Chapter 1 System grounding
 - Chapter 2 Equipment grounding
 - Chapter 3 Static and lightning protection grounding
 - Chapter 5 Electronic equipment grounding

Electrical Drawing Preparation Grounding Plans - Fault Protection

- NFPA 70 (NEC®) ARTICLE 250 Grounding and Bonding
 - II. System Grounding
 - 250.20 Alternating-Current Systems to Be Grounded
 - 250.24 Grounding Service-Supplied Alternating-Current Systems
 - 250.30 Grounding Separately Derived Alternating-Current Systems
 - III. Grounding Electrode System and Grounding Electrode Conductor
 - 250.50 Grounding Electrode System
 - 250.52 Grounding Electrodes
 - 250.66 Size of Alternating-Current Grounding Electrode Conductor
 - V. Bonding
 - 250.106 Lightning Protection Systems

Electrical Drawing Preparation Grounding Plans – Lightning Protection

■ NFPA 780 Standard for the Installation of Lightning Protection Systems

- Chapter 4 Protection for Ordinary Structures
 - 4.2 Materials
 - 4.7.4 Rolling Sphere Method
 - 4.9.10 Number of Down Conductors
 - 4.13 Grounding Electrodes
 - 4.14 Common Grounding
 - 4.16.4 (Structural Metallic Systems) Grounding Electrodes
- Annex L Lightning Risk Assessment

Side Mount Air

Ground Termination

Electrical Drawing Preparation Grounding Plans – Signal Reference

- IEEE 1100-2005 (Emerald Book)
 - Chapter 3 General needs guidelines
 - 3.3 Grounding considerations

- 8.2 Equipment room wiring and grounding
- 8.5 Grounding considerations
- 8.6 Lightning/surge protection considerations
- Chapter 9 Telecommunications, information technology, and distributed computing
 - 9.9 Grounding and bonding

- ¹ MIL-HDBK419A
- ² AFI 32-1065
- ³ UFC 3-570-02A
- ⁴ UFC 3-560-01